BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 32782979)

  • 41. Simultaneously Defined Semiconducting Channel Layer Using Electrohydrodynamic Jet Printing of a Passivation Layer for Oxide Thin-Film Transistors.
    Hong S; Na JW; Lee IS; Kim HT; Kang BH; Chung J; Kim HJ
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39705-39712. PubMed ID: 32805908
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multi-metal electrohydrodynamic redox 3D printing at the submicron scale.
    Reiser A; Lindén M; Rohner P; Marchand A; Galinski H; Sologubenko AS; Wheeler JM; Zenobi R; Poulikakos D; Spolenak R
    Nat Commun; 2019 Apr; 10(1):1853. PubMed ID: 31015443
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-resolution electrohydrodynamic inkjet printing of stretchable metal oxide semiconductor transistors with high performance.
    Kim SY; Kim K; Hwang YH; Park J; Jang J; Nam Y; Kang Y; Kim M; Park HJ; Lee Z; Choi J; Kim Y; Jeong S; Bae BS; Park JU
    Nanoscale; 2016 Oct; 8(39):17113-17121. PubMed ID: 27722626
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications.
    Su W; Cook BS; Fang Y; Tentzeris MM
    Sci Rep; 2016 Oct; 6():35111. PubMed ID: 27713545
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrohydrodynamic-Jet-Printed Phthalimide-Derived Conjugated Polymers for Organic Field-Effect Transistors and Logic Gates.
    Li Z; Jeong YJ; Hong J; Kwon HJ; Ye H; Wang R; Choi HH; Kong H; Hwang H; Kim SH; Tang X
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):7073-7081. PubMed ID: 35080374
    [TBL] [Abstract][Full Text] [Related]  

  • 46. From Traditional to Novel Printed Electrochromic Devices: Material, Structure and Device.
    Cai Q; Yan H; Yao R; Luo D; Li M; Zhong J; Yang Y; Qiu T; Ning H; Peng J
    Membranes (Basel); 2022 Oct; 12(11):. PubMed ID: 36363594
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 3D-printed patient-specific applications in orthopedics.
    Wong KC
    Orthop Res Rev; 2016; 8():57-66. PubMed ID: 30774470
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabrication of Low-Cost Resistance Temperature Detectors and Micro-Heaters by Electrohydrodynamic Printing.
    Ahmad S; Rahman K; Cheema TA; Shakeel M; Khan A; Bermak A
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144041
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrohydrodynamic direct-writing.
    Huang Y; Bu N; Duan Y; Pan Y; Liu H; Yin Z; Xiong Y
    Nanoscale; 2013 Dec; 5(24):12007-17. PubMed ID: 24057297
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stability Bounds for Micron Scale Ag Conductor Lines Produced by Electrohydrodynamic Inkjet Printing.
    Yang J; He P; Derby B
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):39601-39609. PubMed ID: 35979913
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 3D Printing for Electrochemical Energy Applications.
    Browne MP; Redondo E; Pumera M
    Chem Rev; 2020 Mar; 120(5):2783-2810. PubMed ID: 32049499
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 3D Printing Soft Matters and Applications: A Review.
    Zhan S; Guo AXY; Cao SC; Liu N
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409150
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhancement of High-Resolution 3D Inkjet-Printing of Optical Freeform Surfaces Using Digital Twins.
    Sieber I; Thelen R; Gengenbach U
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33396871
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inkjet printing quality improvement research progress: A review.
    Cao T; Yang Z; Zhang H; Wang Y
    Heliyon; 2024 May; 10(10):e30163. PubMed ID: 38813142
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Direct alignment and patterning of silver nanowires by electrohydrodynamic jet printing.
    Lee H; Seong B; Kim J; Jang Y; Byun D
    Small; 2014 Oct; 10(19):3918-22. PubMed ID: 24925213
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inkjet-Printing Technology for Supercapacitor Application: Current State and Perspectives.
    Sajedi-Moghaddam A; Rahmanian E; Naseri N
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34487-34504. PubMed ID: 32628006
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Trends in use of 3D printing in vascular surgery: a survey.
    Marti P; Lampus F; Benevento D; Setacci C
    Int Angiol; 2019 Oct; 38(5):418-424. PubMed ID: 31560185
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Additive Manufacturing of Conducting Polymers: Recent Advances, Challenges, and Opportunities.
    Criado-Gonzalez M; Dominguez-Alfaro A; Lopez-Larrea N; Alegret N; Mecerreyes D
    ACS Appl Polym Mater; 2021 Jun; 3(6):2865-2883. PubMed ID: 35673585
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Fabrication of Polymethyl Methacrylate Nozzles for Electrohydrodynamic Printing.
    Cheng E; Yang X; Yin Z; Hu W; Li L; Zou H
    J Nanosci Nanotechnol; 2021 Mar; 21(3):3249-3255. PubMed ID: 33404440
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inkjet printed (bio)chemical sensing devices.
    Komuro N; Takaki S; Suzuki K; Citterio D
    Anal Bioanal Chem; 2013 Jul; 405(17):5785-805. PubMed ID: 23677254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.