These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 32782979)

  • 81. Ink-based additive manufacturing for electrochemical applications.
    Zhang R; Sun T
    Heliyon; 2024 Jun; 10(12):e33023. PubMed ID: 38994065
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Manufacturing of All Inkjet-Printed Organic Photovoltaic Cell Arrays and Evaluating their Suitability for Flexible Electronics.
    Mitra KY; Alalawe A; Voigt S; Boeffel C; Baumann RR
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30518144
    [TBL] [Abstract][Full Text] [Related]  

  • 83. An Overview of 3D Printing Technologies for Soft Materials and Potential Opportunities for Lipid-based Drug Delivery Systems.
    Vithani K; Goyanes A; Jannin V; Basit AW; Gaisford S; Boyd BJ
    Pharm Res; 2018 Nov; 36(1):4. PubMed ID: 30406349
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing.
    Li J; Rossignol F; Macdonald J
    Lab Chip; 2015 Jun; 15(12):2538-58. PubMed ID: 25953427
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Forward electrohydrodynamic inkjet printing of optical microlenses on microfluidic devices.
    Vespini V; Coppola S; Todino M; Paturzo M; Bianco V; Grilli S; Ferraro P
    Lab Chip; 2016 Jan; 16(2):326-33. PubMed ID: 26660423
    [TBL] [Abstract][Full Text] [Related]  

  • 86. High density, addressable electrohydrodynamic printhead made of a silicon plate and polymer nozzle structure.
    Duan Y; Yang W; Xiao J; Gao J; Wei L; Huang Y; Yin Z
    Lab Chip; 2022 Oct; 22(20):3877-3884. PubMed ID: 36073597
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Direct Electrohydrodynamic Patterning of High-Performance All Metal Oxide Thin-Film Electronics.
    Liang Y; Yong J; Yu Y; Nirmalathas A; Ganesan K; Evans R; Nasr B; Skafidas E
    ACS Nano; 2019 Dec; 13(12):13957-13964. PubMed ID: 31793762
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Cryo-Electrohydrodynamic Jetting of Aqueous Silk Fibroin Solutions.
    Reizabal A; Saiz PG; Luposchainsky S; Liashenko I; Chasko D; Lanceros-Méndez S; Lindberg G; Dalton PD
    ACS Biomater Sci Eng; 2024 Mar; 10(3):1843-1855. PubMed ID: 37988293
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Direct Printing of Asymmetric Electrodes for Improving Charge Injection/Extraction in Organic Electronics.
    Tang X; Kwon HJ; Hong J; Ye H; Wang R; Yun DJ; Park CE; Jeong YJ; Lee HS; Kim SH
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33999-34010. PubMed ID: 32633116
    [TBL] [Abstract][Full Text] [Related]  

  • 90. High-resolution electrohydrodynamic jet printing of small-molecule organic light-emitting diodes.
    Kim K; Kim G; Lee BR; Ji S; Kim SY; An BW; Song MH; Park JU
    Nanoscale; 2015 Aug; 7(32):13410-5. PubMed ID: 26214140
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Inkjet-printed optoelectronics.
    Zhan Z; An J; Wei Y; Tran VT; Du H
    Nanoscale; 2017 Jan; 9(3):965-993. PubMed ID: 28009893
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Emergence of 3D Printed Dosage Forms: Opportunities and Challenges.
    Alhnan MA; Okwuosa TC; Sadia M; Wan KW; Ahmed W; Arafat B
    Pharm Res; 2016 Aug; 33(8):1817-32. PubMed ID: 27194002
    [TBL] [Abstract][Full Text] [Related]  

  • 93. An Atlas for the Inkjet Printing of Large-Area Tactile Sensors.
    Baldini G; Albini A; Maiolino P; Cannata G
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336503
    [TBL] [Abstract][Full Text] [Related]  

  • 94. A 3D Printer Guide for the Development and Application of Electrochemical Cells and Devices.
    Silva AL; Salvador GMDS; Castro SVF; Carvalho NMF; Munoz RAA
    Front Chem; 2021; 9():684256. PubMed ID: 34277568
    [TBL] [Abstract][Full Text] [Related]  

  • 95. High-resolution electrohydrodynamic jet printing.
    Park JU; Hardy M; Kang SJ; Barton K; Adair K; Mukhopadhyay DK; Lee CY; Strano MS; Alleyne AG; Georgiadis JG; Ferreira PM; Rogers JA
    Nat Mater; 2007 Oct; 6(10):782-9. PubMed ID: 17676047
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Review of Batteryless Wireless Sensors Using Additively Manufactured Microwave Resonators.
    Memon MU; Lim S
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28891947
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Microlens Fabrication by Replica Molding of Electro-Hydrodynamic Printing Liquid Mold.
    Fang F; Tao X; Chen X; Wang H; Wu P; Zhang J; Zeng J; Zhu Z; Liu Z
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32028701
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Nanoscale patterns of oligonucleotides formed by electrohydrodynamic jet printing with applications in biosensing and nanomaterials assembly.
    Park JU; Lee JH; Paik U; Lu Y; Rogers JA
    Nano Lett; 2008 Dec; 8(12):4210-6. PubMed ID: 19367962
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Review of Droplet Printing Technologies for Flexible Electronic Devices: Materials, Control, and Applications.
    Jiang J; Chen X; Mei Z; Chen H; Chen J; Wang X; Li S; Zhang R; Zheng G; Li W
    Micromachines (Basel); 2024 Feb; 15(3):. PubMed ID: 38542580
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Microtip focused electrohydrodynamic jet printing with nanoscale resolution.
    Su S; Liang J; Wang Z; Xin W; Li X; Wang D
    Nanoscale; 2020 Dec; 12(48):24450-24462. PubMed ID: 33300927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.