BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32783355)

  • 1. Intron with transgenic marker (InTraM) facilitates high-throughput screening of endogenous gene reporter lines.
    Collins RT; Coxam B; Fechner I; Unterweger I; Szymborska A; Meier K; Gerhardt H
    Genesis; 2020 Nov; 58(10-11):e23391. PubMed ID: 32783355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creation of zebrafish knock-in reporter lines in the nefma gene by Cas9-mediated homologous recombination.
    Eschstruth A; Schneider-Maunoury S; Giudicelli F
    Genesis; 2020 Jan; 58(1):e23340. PubMed ID: 31571409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-based genome engineering of zebrafish using a seamless integration strategy.
    Luo JJ; Bian WP; Liu Y; Huang HY; Yin Q; Yang XJ; Pei DS
    FASEB J; 2018 Sep; 32(9):5132-5142. PubMed ID: 29812974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish.
    Kawahara A; Hisano Y; Ota S; Taimatsu K
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9-Mediated Targeted Knockin of Exogenous Reporter Genes in Zebrafish.
    Kawahara A
    Methods Mol Biol; 2017; 1630():165-173. PubMed ID: 28643258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9.
    Prykhozhij SV; Fuller C; Steele SL; Veinotte CJ; Razaghi B; Robitaille JM; McMaster CR; Shlien A; Malkin D; Berman JN
    Nucleic Acids Res; 2018 Sep; 46(17):e102. PubMed ID: 29905858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exogenous gene integration mediated by genome editing technologies in zebrafish.
    Morita H; Taimatsu K; Yanagi K; Kawahara A
    Bioengineered; 2017 May; 8(3):287-295. PubMed ID: 28272984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent Reporter Zebrafish Line for Estrogenic Compound Screening Generated Using a CRISPR/Cas9-Mediated Knock-in System.
    Abdelmoneim A; Clark CL; Mukai M
    Toxicol Sci; 2020 Feb; 173(2):336-346. PubMed ID: 31688941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish.
    Hruscha A; Krawitz P; Rechenberg A; Heinrich V; Hecht J; Haass C; Schmid B
    Development; 2013 Dec; 140(24):4982-7. PubMed ID: 24257628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Developments in CRISPR/Cas-based Functional Genomics and their Implications for Research Using Zebrafish.
    Prykhozhij SV; Caceres L; Berman JN
    Curr Gene Ther; 2017; 17(4):286-300. PubMed ID: 29173171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome Editing of Silkworms.
    Tsubota T; Sezutsu H
    Methods Mol Biol; 2017; 1630():205-218. PubMed ID: 28643261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment.
    Boel A; Steyaert W; De Rocker N; Menten B; Callewaert B; De Paepe A; Coucke P; Willaert A
    Sci Rep; 2016 Jul; 6():30330. PubMed ID: 27461955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-function chromogenic screening-based CRISPR/Cas9 genome editing system for actinomycetes.
    Wang Q; Xie F; Tong Y; Habisch R; Yang B; Zhang L; Müller R; Fu C
    Appl Microbiol Biotechnol; 2020 Jan; 104(1):225-239. PubMed ID: 31788711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted knock-in of CreER
    Kesavan G; Hammer J; Hans S; Brand M
    Cell Tissue Res; 2018 Apr; 372(1):41-50. PubMed ID: 29435650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid and efficient generation of GFP-knocked-in Drosophila by the CRISPR-Cas9-mediated genome editing.
    Kina H; Yoshitani T; Hanyu-Nakamura K; Nakamura A
    Dev Growth Differ; 2019 May; 61(4):265-275. PubMed ID: 31037730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system.
    Zhang Y; Qin W; Lu X; Xu J; Huang H; Bai H; Li S; Lin S
    Nat Commun; 2017 Jul; 8(1):118. PubMed ID: 28740134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of a novel HEK293 luciferase reporter cell line by CRISPR/Cas9-mediated site-specific integration in the genome to explore the transcriptional regulation of the PGRN gene.
    Li Y; Li S; Li Y; Xia H; Mao Q
    Bioengineered; 2019 Dec; 10(1):98-107. PubMed ID: 31023186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of a zebrafish knock-in line expressing MYC-tagged Sox11a using CRISPR/Cas9 genome editing.
    Krueger LA; Morris AC
    Biochem Biophys Res Commun; 2022 Jun; 608():8-13. PubMed ID: 35378361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing.
    Artegiani B; Hendriks D; Beumer J; Kok R; Zheng X; Joore I; Chuva de Sousa Lopes S; van Zon J; Tans S; Clevers H
    Nat Cell Biol; 2020 Mar; 22(3):321-331. PubMed ID: 32123335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish.
    Auer TO; Del Bene F
    Methods; 2014 Sep; 69(2):142-50. PubMed ID: 24704174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.