BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32783355)

  • 21. One-Step Generation of Seamless Luciferase Gene Knockin Using CRISPR/Cas9 Genome Editing in Human Pluripotent Stem Cells.
    Li M; Hunt JFVS; Bhattacharyya A; Zhao X
    Methods Mol Biol; 2019; 1942():61-69. PubMed ID: 30900175
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish.
    Hisano Y; Sakuma T; Nakade S; Ohga R; Ota S; Okamoto H; Yamamoto T; Kawahara A
    Sci Rep; 2015 Mar; 5():8841. PubMed ID: 25740433
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiplex conditional mutagenesis in zebrafish using the CRISPR/Cas system.
    Yin L; Maddison LA; Chen W
    Methods Cell Biol; 2016; 135():3-17. PubMed ID: 27443918
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-Edited Cell Lines for High-Throughput Screening.
    Dranchak P; Moran JJ; MacArthur R; Lopez-Anido C; Inglese J; Svaren J
    Methods Mol Biol; 2018; 1755():1-17. PubMed ID: 29671259
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generation of Cas9 transgenic zebrafish and their application in establishing an ERV-deficient animal model.
    Yang Z; Chen S; Xue S; Li X; Sun Z; Yang Y; Hu X; Geng T; Cui H
    Biotechnol Lett; 2018 Dec; 40(11-12):1507-1518. PubMed ID: 30244429
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effective CRISPR/Cas9-based nucleotide editing in zebrafish to model human genetic cardiovascular disorders.
    Tessadori F; Roessler HI; Savelberg SMC; Chocron S; Kamel SM; Duran KJ; van Haelst MM; van Haaften G; Bakkers J
    Dis Model Mech; 2018 Oct; 11(10):. PubMed ID: 30355756
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast, precise and cloning-free knock-in of reporter sequences in vivo with high efficiency.
    Zhang Y; Marshall-Phelps K; de Almeida RG
    Development; 2023 Jun; 150(12):. PubMed ID: 37309812
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR-Cas9 system: A new-fangled dawn in gene editing.
    Gupta D; Bhattacharjee O; Mandal D; Sen MK; Dey D; Dasgupta A; Kazi TA; Gupta R; Sinharoy S; Acharya K; Chattopadhyay D; Ravichandiran V; Roy S; Ghosh D
    Life Sci; 2019 Sep; 232():116636. PubMed ID: 31295471
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SpCas9- and LbCas12a-Mediated DNA Editing Produce Different Gene Knockout Outcomes in Zebrafish Embryos.
    Meshalkina DA; Glushchenko AS; Kysil EV; Mizgirev IV; Frolov A
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32635161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Generation of Zebrafish Mariner Model Using the CRISPR/Cas9 System.
    Zou B; Desmidt AA; Mittal R; Yan D; Richmond M; Tekin M; Liu XZ; Lu Z
    Anat Rec (Hoboken); 2020 Mar; 303(3):556-562. PubMed ID: 31260171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Precision-engineered reporter cell lines reveal ABCG2 regulation in live lung cancer cells.
    Kovacsics D; Brózik A; Tihanyi B; Matula Z; Borsy A; Mészáros N; Szabó E; Németh E; Fóthi Á; Zámbó B; Szüts D; Várady G; Orbán TI; Apáti Á; Sarkadi B
    Biochem Pharmacol; 2020 May; 175():113865. PubMed ID: 32142727
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-throughput genetic screens using CRISPR-Cas9 system.
    Kweon J; Kim Y
    Arch Pharm Res; 2018 Sep; 41(9):875-884. PubMed ID: 29637495
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-throughput detection and screening of plants modified by gene editing using quantitative real-time polymerase chain reaction.
    Peng C; Wang H; Xu X; Wang X; Chen X; Wei W; Lai Y; Liu G; Godwin ID; Li J; Zhang L; Xu J
    Plant J; 2018 Aug; 95(3):557-567. PubMed ID: 29761864
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tagging and Deleting of Endogenous Caveolar Components Using CRISPR/Cas9 Technology.
    Shvets E; Mendoza-Topaz C
    Methods Mol Biol; 2020; 2169():149-166. PubMed ID: 32548827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TALEN- and CRISPR-enhanced DNA homologous recombination for gene editing in zebrafish.
    Zhang Y; Huang H; Zhang B; Lin S
    Methods Cell Biol; 2016; 135():107-20. PubMed ID: 27443922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A simple and efficient workflow for generation of knock-in mutations in Jurkat T cells using CRISPR/Cas9.
    Borowicz P; Chan H; Medina D; Gumpelmair S; Kjelstrup H; Spurkland A
    Scand J Immunol; 2020 Apr; 91(4):e12862. PubMed ID: 31889332
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR/Cas9-Directed Gene Editing for the Generation of Loss-of-Function Mutants in High-Throughput Zebrafish F
    Shankaran SS; Dahlem TJ; Bisgrove BW; Yost HJ; Tristani-Firouzi M
    Curr Protoc Mol Biol; 2017 Jul; 119():31.9.1-31.9.22. PubMed ID: 28678442
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Rapid and Cheap Methodology for CRISPR/Cas9 Zebrafish Mutant Screening.
    D'Agostino Y; Locascio A; Ristoratore F; Sordino P; Spagnuolo A; Borra M; D'Aniello S
    Mol Biotechnol; 2016 Jan; 58(1):73-8. PubMed ID: 26676479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving Transgenesis Efficiency and CRISPR-Associated Tools Through Codon Optimization and Native Intron Addition in
    Han Z; Lo WS; Lightfoot JW; Witte H; Sun S; Sommer RJ
    Genetics; 2020 Dec; 216(4):947-956. PubMed ID: 33060138
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome editing in the mammalian brain using the CRISPR-Cas system.
    Nishiyama J
    Neurosci Res; 2019 Apr; 141():4-12. PubMed ID: 30076877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.