These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 32783762)

  • 1. Evolution of chromone-like compounds as potential antileishmanial agents, through the 21
    Silva CFM; Pinto DCGA; Fernandes PA; Silva AMS
    Expert Opin Drug Discov; 2020 Dec; 15(12):1425-1439. PubMed ID: 32783762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 4-Arylamino-6-nitroquinazolines: Synthesis and their activities against neglected disease leishmaniasis.
    Saad SM; Ghouri N; Perveen S; Khan KM; Choudhary MI
    Eur J Med Chem; 2016 Jan; 108():13-20. PubMed ID: 26619389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SAR refinement of antileishmanial N(2),N(4)-disubstituted quinazoline-2,4-diamines.
    Zhu X; Van Horn KS; Barber MM; Yang S; Wang MZ; Manetsch R; Werbovetz KA
    Bioorg Med Chem; 2015 Aug; 23(16):5182-9. PubMed ID: 25749014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the current status of privileged N-heterocycles as antileishmanial agents.
    Razzaghi-Asl N; Sepehri S; Ebadi A; Karami P; Nejatkhah N; Johari-Ahar M
    Mol Divers; 2020 May; 24(2):525-569. PubMed ID: 31028558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retrospective Review of Chromane Analogues as Anti-protozoal Leads: A Decade's Worth of Evolution.
    Jadhav SR; Karan Kumar B; Joshi RP; Suryakant CK; Chandu A; Muzaffar-Ur-Rehman M; Khetmalis YM; Nandikolla A; Murugesan S; Chandra Sekhar KVG
    Curr Top Med Chem; 2023; 23(9):713-735. PubMed ID: 36786146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A non-commercial approach for the generation of transgenic Leishmania tarentolae and its application in antileishmanial drug discovery.
    Pineda T; Valencia Y; Flórez MF; Pulido SA; Vélez ID; Robledo SM
    Parasitology; 2016 Aug; 143(9):1133-42. PubMed ID: 27174193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic product-based approach toward potential antileishmanial drug development.
    Pal R; Teli G; Akhtar MJ; Matada GSP
    Eur J Med Chem; 2024 Jan; 263():115927. PubMed ID: 37976706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro and in vivo cytotoxicities and antileishmanial activities of thymol and hemisynthetic derivatives.
    Robledo S; Osorio E; Muñoz D; Jaramillo LM; Restrepo A; Arango G; Vélez I
    Antimicrob Agents Chemother; 2005 Apr; 49(4):1652-5. PubMed ID: 15793164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comprehensive review of chalcone derivatives as antileishmanial agents.
    de Mello MVP; Abrahim-Vieira BA; Domingos TFS; de Jesus JB; de Sousa ACC; Rodrigues CR; Souza AMT
    Eur J Med Chem; 2018 Apr; 150():920-929. PubMed ID: 29602038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promising therapeutic targets for antileishmanial drugs.
    Werbovetz KA
    Expert Opin Ther Targets; 2002 Aug; 6(4):407-22. PubMed ID: 12223057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The chemotherapeutic potential of chalcones against leishmaniases: a review.
    Tajuddeen N; Isah MB; Suleiman MA; van Heerden FR; Ibrahim MA
    Int J Antimicrob Agents; 2018 Mar; 51(3):311-318. PubMed ID: 28668673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic search for benzimidazole compounds and derivatives with antileishmanial effects.
    Sánchez-Salgado JC; Bilbao-Ramos P; Dea-Ayuela MA; Hernández-Luis F; Bolás-Fernández F; Medina-Franco JL; Rojas-Aguirre Y
    Mol Divers; 2018 Nov; 22(4):779-790. PubMed ID: 29748853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Medicinal plants from the Brazilian Amazonian region and their antileishmanial activity: a review.
    Da Silva BJM; Hage AAP; Silva EO; Rodrigues APD
    J Integr Med; 2018 Jul; 16(4):211-222. PubMed ID: 29691188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in antileishmanial drug development.
    Davis AJ; Kedzierski L
    Curr Opin Investig Drugs; 2005 Feb; 6(2):163-9. PubMed ID: 15751739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antileishmanial Activity of Lignans, Neolignans, and Other Plant Phenols.
    Pospíšil J; Konrádová D; Strnad M
    Prog Chem Org Nat Prod; 2021; 115():115-176. PubMed ID: 33797642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manzamine alkaloids as antileishmanial agents: A review.
    Ashok P; Lathiya H; Murugesan S
    Eur J Med Chem; 2015 Jun; 97():928-36. PubMed ID: 25023608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repurposing as a strategy for the discovery of new anti-leishmanials: the-state-of-the-art.
    Charlton RL; Rossi-Bergmann B; Denny PW; Steel PG
    Parasitology; 2018 Feb; 145(2):219-236. PubMed ID: 28805165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antileishmanial Drug Discovery: Synthetic Methods, Chemical Characteristics, and Biological Potential of Quinazolines and its Derivatives.
    Sahu A; Kumar D; Agrawal RK
    Antiinflamm Antiallergy Agents Med Chem; 2017; 16(1):3-32. PubMed ID: 28464778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modes of action of Leishmanicidal antimicrobial peptides.
    Marr AK; McGwire BS; McMaster WR
    Future Microbiol; 2012 Sep; 7(9):1047-59. PubMed ID: 22953706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of Nitro (NO
    Kamdem BP; Elizabeth FI
    Curr Drug Targets; 2021; 22(4):379-398. PubMed ID: 33371845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.