BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32783858)

  • 41. High-throughput screening for heterotrophic growth in microalgae using the Biolog Plate assay.
    Sutherland DL; Burke J; Ralph PJ
    N Biotechnol; 2021 Nov; 65():61-68. PubMed ID: 34384916
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of carbon source and light intensity on the growth and total lipid production of three microalgae under different culture conditions.
    Gim GH; Ryu J; Kim MJ; Kim PI; Kim SW
    J Ind Microbiol Biotechnol; 2016 May; 43(5):605-16. PubMed ID: 26856592
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biomass production and phycoremediation of microalgae cultivated in polluted river water.
    Ummalyma SB; Singh A
    Bioresour Technol; 2022 May; 351():126948. PubMed ID: 35257884
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mixotrophy in nanoflagellates across environmental gradients in the ocean.
    Edwards KF
    Proc Natl Acad Sci U S A; 2019 Mar; 116(13):6211-6220. PubMed ID: 30760589
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phosphorus uptake, distribution and transformation with Chlorella vulgaris under different trophic modes.
    Wu Q; Guo L; Wang Y; Zhao Y; Jin C; Gao M; She Z
    Chemosphere; 2021 Dec; 285():131366. PubMed ID: 34242982
    [TBL] [Abstract][Full Text] [Related]  

  • 46. TFA and EPA productivities of Nannochloropsis salina influenced by temperature and nitrate stimuli in turbidostatic controlled experiments.
    Hoffmann M; Marxen K; Schulz R; Vanselow KH
    Mar Drugs; 2010 Sep; 8(9):2526-45. PubMed ID: 20948904
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lipid Accumulation Mechanisms in Auto- and Heterotrophic Microalgae.
    Chen HH; Jiang JG
    J Agric Food Chem; 2017 Sep; 65(37):8099-8110. PubMed ID: 28838232
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of C/N ratio on microalgae growth in mixotrophy and incorporation of titanium nanoparticles for cell flocculation and lipid enhancement in economical biodiesel application.
    Khanra A; Vasistha S; Kumar P; Rai MP
    3 Biotech; 2020 Aug; 10(8):331. PubMed ID: 32656064
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biomass and eicosapentaenoic acid production from Amphora sp. under different environmental and nutritional conditions.
    Cheah YT; Ng BW; Tan TL; Chia ZS; Chan DJC
    Biotechnol Appl Biochem; 2023 Apr; 70(2):568-580. PubMed ID: 35767864
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lipase-catalyzed in-situ biosynthesis of glycerol-free biodiesel from heterotrophic microalgae, Aurantiochytrium sp. KRS101 biomass.
    Kim KH; Lee OK; Kim CH; Seo JW; Oh BR; Lee EY
    Bioresour Technol; 2016 Jul; 211():472-7. PubMed ID: 27035480
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production.
    Miazek K; Remacle C; Richel A; Goffin D
    Bioresour Technol; 2017 Apr; 230():122-131. PubMed ID: 28187341
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources.
    Hu H; Gao K
    Biotechnol Lett; 2003 Mar; 25(5):421-5. PubMed ID: 12882566
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Utilization of biodiesel-derived glycerol or xylose for increased growth and lipid production by indigenous microalgae.
    Leite GB; Paranjape K; Abdelaziz AEM; Hallenbeck PC
    Bioresour Technol; 2015 May; 184():123-130. PubMed ID: 25466992
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium.
    Mohammad Mirzaie MA; Kalbasi M; Mousavi SM; Ghobadian B
    Prep Biochem Biotechnol; 2016; 46(2):150-6. PubMed ID: 25807048
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impact of organic carbon acquisition on growth and functional biomolecule production in diatoms.
    Marella TK; Bhattacharjya R; Tiwari A
    Microb Cell Fact; 2021 Jul; 20(1):135. PubMed ID: 34266439
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Urea as a source of nitrogen and carbon leads to increased photosynthesis rates in Chlamydomonas reinhardtii under mixotrophy.
    Rosa RM; Machado M; Vaz MGMV; Lopes-Santos R; Nascimento AGD; Araújo WL; Nunes-Nesi A
    J Biotechnol; 2023 Apr; 367():20-30. PubMed ID: 36966923
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biosynthesis of high yield fatty acids from Chlorella vulgaris NIES-227 under nitrogen starvation stress during heterotrophic cultivation.
    Shen XF; Chu FF; Lam PK; Zeng RJ
    Water Res; 2015 Sep; 81():294-300. PubMed ID: 26081436
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ecophysiological strategies for growth under varying light and organic carbon supply in two species of green microalgae differing in their motility.
    Spijkerman E; Lukas M; Wacker A
    Phytochemistry; 2017 Dec; 144():43-51. PubMed ID: 28881198
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The characteristics of TAG and EPA accumulation in Nannochloropsis oceanica IMET1 under different nitrogen supply regimes.
    Meng Y; Jiang J; Wang H; Cao X; Xue S; Yang Q; Wang W
    Bioresour Technol; 2015 Mar; 179():483-489. PubMed ID: 25575208
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhanced biomass production through a repeated sequential auto-and heterotrophic culture mode in Chlorella protothecoides.
    Joun J; Hong ME; Sirohi R; Sim SJ
    Bioresour Technol; 2021 Oct; 338():125532. PubMed ID: 34274588
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.