BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32783887)

  • 1. Self-assembly of supported lipid multi-bilayers investigated by time-resolved X-ray diffraction.
    Xu Y; Jiang H
    Biochim Biophys Acta Biomembr; 2020 Nov; 1862(11):183437. PubMed ID: 32783887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and mechanical properties of cardiolipin lipid bilayers determined using neutron spin echo, small angle neutron and X-ray scattering, and molecular dynamics simulations.
    Pan J; Cheng X; Sharp M; Ho CS; Khadka N; Katsaras J
    Soft Matter; 2015 Jan; 11(1):130-8. PubMed ID: 25369786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric structural features in single supported lipid bilayers containing cholesterol and GM1 resolved with synchrotron X-Ray reflectivity.
    Reich C; Horton MR; Krause B; Gast AP; Rädler JO; Nickel B
    Biophys J; 2008 Jul; 95(2):657-68. PubMed ID: 18375517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stalk formation as a function of lipid composition studied by X-ray reflectivity.
    Khattari Z; Köhler S; Xu Y; Aeffner S; Salditt T
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):41-50. PubMed ID: 25261611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution of SNARE proteins into solid-supported lipid bilayer stacks and X-ray structure analysis.
    Xu Y; Kuhlmann J; Brennich M; Komorowski K; Jahn R; Steinem C; Salditt T
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):566-578. PubMed ID: 29106973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Parameterization of Cholesterol for Mixed Lipid Bilayer Simulation within the Amber Lipid14 Force Field.
    Madej BD; Gould IR; Walker RC
    J Phys Chem B; 2015 Sep; 119(38):12424-35. PubMed ID: 26359797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of cholesterol on short- and long-chain monounsaturated lipid bilayers as determined by molecular dynamics simulations and X-ray scattering.
    Kucerka N; Perlmutter JD; Pan J; Tristram-Nagle S; Katsaras J; Sachs JN
    Biophys J; 2008 Sep; 95(6):2792-805. PubMed ID: 18515383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Cholesterol on Phospholipid Bilayer Structure and Dynamics.
    Boughter CT; Monje-Galvan V; Im W; Klauda JB
    J Phys Chem B; 2016 Nov; 120(45):11761-11772. PubMed ID: 27771953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale compression-induced restructuring of stacked lipid bilayers: From buckling delamination to molecular packing.
    Porras-Gómez M; Kim H; Dronadula MT; Kambar N; Metellus CJB; Aluru NR; van der Zande A; Leal C
    PLoS One; 2022; 17(12):e0275079. PubMed ID: 36490254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between lamellar (vesicles) and nonlamellar lipid liquid-crystalline nanoparticles as studied by time-resolved small-angle X-ray diffraction.
    Vandoolaeghe P; Barauskas J; Johnsson M; Tiberg F; Nylander T
    Langmuir; 2009 Apr; 25(7):3999-4008. PubMed ID: 19714888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of supported DPPC/cholesterol bilayers studied via X-ray reflectivity.
    Vega M; Lurio L; Lal J; Karapetrova EA; Gaillard ER
    Phys Chem Chem Phys; 2020 Sep; 22(34):19089-19099. PubMed ID: 32807995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structures of polyunsaturated lipid bilayers by joint refinement of neutron and X-ray scattering data.
    Marquardt D; Heberle FA; Pan J; Cheng X; Pabst G; Harroun TA; Kučerka N; Katsaras J
    Chem Phys Lipids; 2020 Jul; 229():104892. PubMed ID: 32061581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular structures of fluid phosphatidylethanolamine bilayers obtained from simulation-to-experiment comparisons and experimental scattering density profiles.
    Kučerka N; van Oosten B; Pan J; Heberle FA; Harroun TA; Katsaras J
    J Phys Chem B; 2015 Feb; 119(5):1947-56. PubMed ID: 25436970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scattering density profile model of POPG bilayers as determined by molecular dynamics simulations and small-angle neutron and X-ray scattering experiments.
    Kučerka N; Holland BW; Gray CG; Tomberli B; Katsaras J
    J Phys Chem B; 2012 Jan; 116(1):232-9. PubMed ID: 22107350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-plane molecular organization of hydrated single lipid bilayers: DPPC:cholesterol.
    Gumí-Audenis B; Costa L; Redondo-Morata L; Milhiet PE; Sanz F; Felici R; Giannotti MI; Carlà F
    Nanoscale; 2017 Dec; 10(1):87-92. PubMed ID: 29210438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholesterol modulates the pressure response of DMPC membranes.
    Surmeier G; Paulus M; Salmen P; Dogan S; Sternemann C; Nase J
    Biophys Chem; 2019 Sep; 252():106210. PubMed ID: 31265976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined Coarse-Grained Molecular Dynamics and Neutron Reflectivity Characterization of Supported Lipid Membranes.
    Koutsioubas A
    J Phys Chem B; 2016 Nov; 120(44):11474-11483. PubMed ID: 27748120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cholesterol concentration on the interaction of cytarabine with lipid membranes: a molecular dynamics simulation study.
    Karami L; Jalili S
    J Biomol Struct Dyn; 2015; 33(6):1254-68. PubMed ID: 25068451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of natural and enantiomeric cholesterol on the thermotropic phase behavior and structure of egg sphingomyelin bilayer membranes.
    Mannock DA; McIntosh TJ; Jiang X; Covey DF; McElhaney RN
    Biophys J; 2003 Feb; 84(2 Pt 1):1038-46. PubMed ID: 12547785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between ether phospholipids and cholesterol as determined by scattering and molecular dynamics simulations.
    Pan J; Cheng X; Heberle FA; Mostofian B; Kučerka N; Drazba P; Katsaras J
    J Phys Chem B; 2012 Dec; 116(51):14829-38. PubMed ID: 23199292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.