These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32783887)

  • 41. The molecular structure of a phosphatidylserine bilayer determined by scattering and molecular dynamics simulations.
    Pan J; Cheng X; Monticelli L; Heberle FA; Kučerka N; Tieleman DP; Katsaras J
    Soft Matter; 2014 Jun; 10(21):3716-25. PubMed ID: 24807693
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cholesterol monohydrate nucleation in ultrathin films on water.
    Rapaport H; Kuzmenko I; Lafont S; Kjaer K; Howes PB; Als-Nielsen J; Lahav M; Leiserowitz L
    Biophys J; 2001 Nov; 81(5):2729-36. PubMed ID: 11606285
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Supported bilayers: combined specular and diffuse X-ray scattering.
    Malaquin L; Charitat T; Daillant J
    Eur Phys J E Soft Matter; 2010 Mar; 31(3):285-301. PubMed ID: 20306279
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The condensing effect of cholesterol in lipid bilayers.
    Hung WC; Lee MT; Chen FY; Huang HW
    Biophys J; 2007 Jun; 92(11):3960-7. PubMed ID: 17369407
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A cholesterol-based tether for creating photopatterned lipid membrane arrays on both a silica and gold surface.
    Han X; Achalkumar AS; Bushby RJ; Evans SD
    Chemistry; 2009 Jun; 15(26):6363-70. PubMed ID: 19472226
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cholesterol behavior in asymmetric lipid bilayers: insights from molecular dynamics simulations.
    Yesylevskyy SO; Demchenko AP
    Methods Mol Biol; 2015; 1232():291-306. PubMed ID: 25331142
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cryo-EM, X-ray diffraction, and atomistic simulations reveal determinants for the formation of a supramolecular myelin-like proteolipid lattice.
    Ruskamo S; Krokengen OC; Kowal J; Nieminen T; Lehtimäki M; Raasakka A; Dandey VP; Vattulainen I; Stahlberg H; Kursula P
    J Biol Chem; 2020 Jun; 295(26):8692-8705. PubMed ID: 32265298
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Steroid-steroid interactions in biological membranes: Cholesterol and cortisone.
    Khondker A; Hub JS; Rheinstädter MC
    Chem Phys Lipids; 2019 Jul; 221():193-197. PubMed ID: 30951711
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lateral organization in lipid-cholesterol mixed bilayers.
    Pandit SA; Khelashvili G; Jakobsson E; Grama A; Scott HL
    Biophys J; 2007 Jan; 92(2):440-7. PubMed ID: 17071661
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Investigation of finite system-size effects in molecular dynamics simulations of lipid bilayers.
    Castro-Román F; Benz RW; White SH; Tobias DJ
    J Phys Chem B; 2006 Nov; 110(47):24157-64. PubMed ID: 17125387
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Studies of short-wavelength collective molecular motions in lipid bilayers using high resolution inelastic X-ray scattering.
    Chen PJ; Liu Y; Weiss TM; Huang HW; Sinn H; Alp EE; Alatas A; Said A; Chen SH
    Biophys Chem; 2003 Sep; 105(2-3):721-41. PubMed ID: 14499929
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stretch-Induced Interdigitation of a Phospholipid/Cholesterol Bilayer.
    Shigematsu T; Koshiyama K; Wada S
    J Phys Chem B; 2018 Mar; 122(9):2556-2563. PubMed ID: 29419298
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structure of two-component lipid membranes on solid support: an x-ray reflectivity study.
    Nováková E; Giewekemeyer K; Salditt T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051911. PubMed ID: 17279943
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantitative Characterization of Cholesterol Partitioning between Binary Bilayers.
    Park S; Im W
    J Chem Theory Comput; 2018 Jun; 14(6):2829-2833. PubMed ID: 29733641
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cholesterol-induced modulated phase in phospholipid membranes.
    Karmakar S; Raghunathan VA
    Phys Rev Lett; 2003 Aug; 91(9):098102. PubMed ID: 14525216
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biomolecular and amphiphilic films probed by surface sensitive X-ray and neutron scattering.
    Salditt T; Brotons G
    Anal Bioanal Chem; 2004 Aug; 379(7-8):960-73. PubMed ID: 15338090
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Effect of cholesterol on the structure and dynamic properties of unsaturated phospholipid bilayers].
    Kornilov VV; Rabinovich AL; Balabaev NK; Bessonov VV
    Biofizika; 2008; 53(1):84-92. PubMed ID: 18488506
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure and interaction potentials in solid-supported lipid membranes studied by X-ray reflectivity at varied osmotic pressure.
    Mennicke U; Constantin D; Salditt T
    Eur Phys J E Soft Matter; 2006 Jun; 20(2):221-30. PubMed ID: 16802069
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural Characterization of Nanoparticle-Supported Lipid Bilayer Arrays by Grazing Incidence X-ray and Neutron Scattering.
    Paracini N; Gutfreund P; Welbourn R; Gonzalez-Martinez JF; Zhu K; Miao Y; Yepuri N; Darwish TA; Garvey C; Waldie S; Larsson J; Wolff M; Cárdenas M
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):3772-3780. PubMed ID: 36625710
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thermotropic phase behavior of milk sphingomyelin and role of cholesterol in the formation of the liquid ordered phase examined using SR-XRD and DSC.
    Lopez C; Cheng K; Perez J
    Chem Phys Lipids; 2018 Sep; 215():46-55. PubMed ID: 30076798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.