These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 32784127)
1. Toward Minimal-Sensing Locomotion Mode Recognition for a Powered Knee-Ankle Prosthesis. Khademi G; Simon D IEEE Trans Biomed Eng; 2021 Mar; 68(3):967-979. PubMed ID: 32784127 [TBL] [Abstract][Full Text] [Related]
2. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. Young AJ; Kuiken TA; Hargrove LJ J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111 [TBL] [Abstract][Full Text] [Related]
3. A training method for locomotion mode prediction using powered lower limb prostheses. Young AJ; Simon AM; Hargrove LJ IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):671-7. PubMed ID: 24184753 [TBL] [Abstract][Full Text] [Related]
4. Gradient-Based Multi-Objective Feature Selection for Gait Mode Recognition of Transfemoral Amputees. Khademi G; Mohammadi H; Simon D Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634668 [TBL] [Abstract][Full Text] [Related]
5. An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes. Young AJ; Simon A; Hargrove LJ Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1587-90. PubMed ID: 24110005 [TBL] [Abstract][Full Text] [Related]
6. A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis. Su BY; Wang J; Liu SQ; Sheng M; Jiang J; Xiang K IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1032-1042. PubMed ID: 30969928 [TBL] [Abstract][Full Text] [Related]
7. Ambulation Mode Classification of Individuals with Transfemoral Amputation through A-Mode Sonomyography and Convolutional Neural Networks. Murray R; Mendez J; Gabert L; Fey NP; Liu H; Lenzi T Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502055 [TBL] [Abstract][Full Text] [Related]
8. Detection of critical errors of locomotion mode recognition for volitional control of powered transfemoral prostheses. Fan Zhang ; Ming Liu ; He Huang Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1128-31. PubMed ID: 26736464 [TBL] [Abstract][Full Text] [Related]
9. Intent recognition in a powered lower limb prosthesis using time history information. Young AJ; Simon AM; Fey NP; Hargrove LJ Ann Biomed Eng; 2014 Mar; 42(3):631-41. PubMed ID: 24052324 [TBL] [Abstract][Full Text] [Related]
10. Investigation of Timing to Switch Control Mode in Powered Knee Prostheses during Task Transitions. Zhang F; Liu M; Huang H PLoS One; 2015; 10(7):e0133965. PubMed ID: 26197084 [TBL] [Abstract][Full Text] [Related]
11. Delaying ambulation mode transitions in a powered knee-ankle prosthesis. Simon AM; Spanias JA; Ingraham KA; Hargrove LJ Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5079-5082. PubMed ID: 28269410 [TBL] [Abstract][Full Text] [Related]
12. A Classification Method for User-Independent Intent Recognition for Transfemoral Amputees Using Powered Lower Limb Prostheses. Young AJ; Hargrove LJ IEEE Trans Neural Syst Rehabil Eng; 2016 Feb; 24(2):217-25. PubMed ID: 25794392 [TBL] [Abstract][Full Text] [Related]
13. Adapting Semi-Active Prostheses to Real-World Movements: Sensing and Controlling the Dynamic Mean Ankle Moment Arm with a Variable-Stiffness Foot on Ramps and Stairs. Leestma JK; Fehr KH; Adamczyk PG Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577219 [TBL] [Abstract][Full Text] [Related]
14. Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis. Ingraham KA; Fey NP; Simon AM; Hargrove LJ PLoS One; 2016; 11(1):e0147661. PubMed ID: 26807889 [TBL] [Abstract][Full Text] [Related]
15. Delaying Ambulation Mode Transition Decisions Improves Accuracy of a Flexible Control System for Powered Knee-Ankle Prosthesis. Simon AM; Ingraham KA; Spanias JA; Young AJ; Finucane SB; Halsne EG; Hargrove LJ IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1164-1171. PubMed ID: 28113980 [TBL] [Abstract][Full Text] [Related]
16. Impedance Control Strategies for Enhancing Sloped and Level Walking Capabilities for Individuals with Transfemoral Amputation Using a Powered Multi-Joint Prosthesis. Bhakta K; Camargo J; Kunapuli P; Childers L; Young A Mil Med; 2020 Jan; 185(Suppl 1):490-499. PubMed ID: 32074296 [TBL] [Abstract][Full Text] [Related]
17. A Stair Ascent and Descent Controller for a Powered Ankle Prosthesis. Culver S; Bartlett H; Shultz A; Goldfarb M IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):993-1002. PubMed ID: 29752234 [TBL] [Abstract][Full Text] [Related]
18. Online adaptive neural control of a robotic lower limb prosthesis. Spanias JA; Simon AM; Finucane SB; Perreault EJ; Hargrove LJ J Neural Eng; 2018 Feb; 15(1):016015. PubMed ID: 29019467 [TBL] [Abstract][Full Text] [Related]
19. Continuous A-Mode Ultrasound-Based Prediction of Transfemoral Amputee Prosthesis Kinematics Across Different Ambulation Tasks. Mendez J; Murray R; Gabert L; Fey NP; Liu H; Lenzi T IEEE Trans Biomed Eng; 2024 Jan; 71(1):56-67. PubMed ID: 37428665 [TBL] [Abstract][Full Text] [Related]
20. Running with a powered knee and ankle prosthesis. Shultz AH; Lawson BE; Goldfarb M IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):403-12. PubMed ID: 25020138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]