These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 32784658)

  • 1. Fabrication of Chalcogenide Glass Based Hexagonal Gapless Microlens Arrays via Combining Femtosecond Laser Assist Chemical Etching and Precision Glass Molding Processes.
    Zhang F; Yang Q; Bian H; Li M; Hou X; Chen F
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32784658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of a Chalcogenide Glass Microlens Array for Infrared Laser Beam Homogenization.
    Zhang F; Yang Q; Bian H; Wang S; Li M; Hou X; Chen F
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Review of the Precision Glass Molding of Chalcogenide Glass (ChG) for Infrared Optics.
    Zhou T; Zhu Z; Liu X; Liang Z; Wang X
    Micromachines (Basel); 2018 Jul; 9(7):. PubMed ID: 30424270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid fabrication of large-area concave microlens arrays on silica glasses by femtosecond laser bursts.
    Wang Q; Yang S; Yang Z; Duan J; Xiong W; Deng L
    Opt Lett; 2022 Aug; 47(15):3936-3939. PubMed ID: 35913352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Ultraviolet-Lithography-Assisted Sintering Method for Glass Microlens Array Fabrication.
    Zuo F; Ma S; Zhao W; Yang C; Li Z; Zhang C; Bai J
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variable focus convex microlens array on K9 glass substrate based on femtosecond laser processing and hot embossing lithography.
    Chen Z; Yuan H; Wu P; Zhang W; Juodkazis S; Huang H; Cao X
    Opt Lett; 2022 Jan; 47(1):22-25. PubMed ID: 34951873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of Interfacial Adhesion and Re-Ir Alloy Coating in Chalcogenide Glass Molding.
    Zhu Z; Zhou T; Yu Q; Wang X; Xie J; Yan T; Ruan H; Cheung C
    Langmuir; 2023 Jul; 39(28):9924-9931. PubMed ID: 37369105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid fabrication of a large-area close-packed quasi-periodic microlens array on BK7 glass.
    Chen F; Deng Z; Yang Q; Bian H; Du G; Si J; Hou X
    Opt Lett; 2014 Feb; 39(3):606-9. PubMed ID: 24487877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method.
    Chen F; Liu H; Yang Q; Wang X; Hou C; Bian H; Liang W; Si J; Hou X
    Opt Express; 2010 Sep; 18(19):20334-43. PubMed ID: 20940925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of an infrared Shack-Hartmann sensor by combining high-speed single-point diamond milling and precision compression molding processes.
    Zhang L; Zhou W; Naples NJ; Yi AY
    Appl Opt; 2018 May; 57(13):3598-3605. PubMed ID: 29726537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on Deformation Behavior of Glass in High-temperature Molding for Massive Unit Microlens Arrays.
    Wang G; Zhou T; Sun X; Gao L; Yao X; Zhao B; Guo W
    ACS Appl Mater Interfaces; 2024 Aug; 16(32):43038-43048. PubMed ID: 39082273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching.
    Tong S; Bian H; Yang Q; Chen F; Deng Z; Si J; Hou X
    Opt Express; 2014 Nov; 22(23):29283-91. PubMed ID: 25402166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinspired Underwater Superoleophobic Microlens Array With Remarkable Oil-Repellent and Self-Cleaning Ability.
    Bian H; Liang J; Li M; Zhang F; Wei Y
    Front Chem; 2020; 8():687. PubMed ID: 32850682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replication of a glass microlens array using a vitreous carbon mold.
    Kim YK; Ju JH; Kim SM
    Opt Express; 2018 Jun; 26(12):14936-14944. PubMed ID: 30114798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manufacturing of a microlens array mold by a two-step method combining microindentation and precision polishing.
    Zhang L; Yi AY
    Appl Opt; 2020 Aug; 59(23):6945-6952. PubMed ID: 32788785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of temperature on the molding of chalcogenide glass lenses for infrared imaging applications.
    Cha du H; Kim HJ; Park HS; Hwang Y; Kim JH; Hong JH; Lee KS
    Appl Opt; 2010 Mar; 49(9):1607-13. PubMed ID: 20300157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconfigurable Microlens Array Enables Tunable Imaging Based on Shape Memory Polymers.
    Sun ZJ; Liu YQ; Wan JY; Liu XQ; Han DD; Chen QD; Zhang YL
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):9581-9592. PubMed ID: 38332526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces.
    Hao B; Liu H; Chen F; Yang Q; Qu P; Du G; Si J; Wang X; Hou X
    Opt Express; 2012 Jun; 20(12):12939-48. PubMed ID: 22714321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transferability of Diffractive Structure in the Compression Molding of Chalcogenide Glass.
    Son BR; Kim JK; Choi YS; Park C
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glass-in-glass infiltration for 3D micro-optical composite components.
    Casamenti E; Torun G; Borasi L; Lautenbacher M; Bertrand M; Faist J; Mortensen A; Bellouard Y
    Opt Express; 2022 Apr; 30(8):13603-13615. PubMed ID: 35472970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.