These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 32784742)
41. Cationic Nanogels Enable Gold Nanoparticle Immobilization and Regulated Catalytic Activity. Wang X; Guo X; Cohen Stuart MA; Wang J; Ding P Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37112082 [TBL] [Abstract][Full Text] [Related]
42. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
43. Block copolymer micelles as nanoreactors for self-assembled morphologies of gold nanoparticles. Khullar P; Singh V; Mahal A; Kumar H; Kaur G; Bakshi MS J Phys Chem B; 2013 Mar; 117(10):3028-39. PubMed ID: 23458728 [TBL] [Abstract][Full Text] [Related]
44. Thermoresponsive Amphiphilic Block Copolymer-Stablilized Gold Nanoparticles: Synthesis and High Catalytic Properties. Lü J; Yang Y; Gao J; Duan H; Lü C Langmuir; 2018 Jul; 34(28):8205-8214. PubMed ID: 29920199 [TBL] [Abstract][Full Text] [Related]
45. Self-assembly of amphiphilic plasmonic micelle-like nanoparticles in selective solvents. He J; Huang X; Li YC; Liu Y; Babu T; Aronova MA; Wang S; Lu Z; Chen X; Nie Z J Am Chem Soc; 2013 May; 135(21):7974-84. PubMed ID: 23642094 [TBL] [Abstract][Full Text] [Related]
46. Natural Deposition Strategy for Interfacial, Self-Assembled, Large-Scale, Densely Packed, Monolayer Film with Ligand-Exchanged Gold Nanorods for In Situ Surface-Enhanced Raman Scattering Drug Detection. Mao M; Zhou B; Tang X; Chen C; Ge M; Li P; Huang X; Yang L; Liu J Chemistry; 2018 Mar; 24(16):4094-4102. PubMed ID: 29327504 [TBL] [Abstract][Full Text] [Related]
47. A strategy to assemble nanoparticles with polymers for mitigating cytotoxicity and enabling size tuning. Chou LY; Chan WC Nanomedicine (Lond); 2011 Jul; 6(5):767-75. PubMed ID: 21605005 [TBL] [Abstract][Full Text] [Related]
48. Plasmonic Vesicles of Amphiphilic Nanocrystals: Optically Active Multifunctional Platform for Cancer Diagnosis and Therapy. Song J; Huang P; Duan H; Chen X Acc Chem Res; 2015 Sep; 48(9):2506-15. PubMed ID: 26134093 [TBL] [Abstract][Full Text] [Related]
49. A binary carbon@silica@carbon hydrophobic nanoreactor for highly efficient selective oxidation of aromatic alkanes. Xiang G; Zhang L; Chen J; Zhang B; Liu Z Nanoscale; 2021 Nov; 13(43):18140-18147. PubMed ID: 34724701 [TBL] [Abstract][Full Text] [Related]
50. Self-assembly of nanoparticle amphiphiles with adaptive surface chemistry. Lee HY; Shin SH; Drews AM; Chirsan AM; Lewis SA; Bishop KJ ACS Nano; 2014 Oct; 8(10):9979-87. PubMed ID: 25229312 [TBL] [Abstract][Full Text] [Related]
51. Nanoreactor-based catalytic systems for therapeutic applications: Principles, strategies, and challenges. Zhang D; Liu D; Wang C; Su Y; Zhang X Adv Colloid Interface Sci; 2023 Dec; 322():103037. PubMed ID: 37931381 [TBL] [Abstract][Full Text] [Related]
52. Nanoporous Thin Films and Binary Nanoparticle Superlattices Created by Directed Self-Assembly of Block Copolymer Hybrid Materials. Pietsch T; Müller-Buschbaum P; Mahltig B; Fahmi A ACS Appl Mater Interfaces; 2015 Jun; 7(23):12440-9. PubMed ID: 25647185 [TBL] [Abstract][Full Text] [Related]
53. Self-Assembled Multienzyme Nanostructures on Synthetic Protein Scaffolds. Liu Z; Cao S; Liu M; Kang W; Xia J ACS Nano; 2019 Oct; 13(10):11343-11352. PubMed ID: 31498583 [TBL] [Abstract][Full Text] [Related]
54. Amphiphilic Janus gold nanoparticles prepared by interface-directed self-assembly: synthesis and self-assembly. Liu G; Tian J; Zhang X; Zhao H Chem Asian J; 2014 Sep; 9(9):2597-603. PubMed ID: 25044923 [TBL] [Abstract][Full Text] [Related]
55. Hierarchical Self-Assembly of Cholesterol-DNA Nanorods. Zhang Y; Peng R; Xu F; Ke Y Bioconjug Chem; 2019 Jul; 30(7):1845-1849. PubMed ID: 31117345 [TBL] [Abstract][Full Text] [Related]
56. Chemical fuel-driven transient polymeric micelle nanoreactors toward reversible trapping and reaction acceleration. Lang X; Thumu U; Yuan L; Zheng C; Zhang H; He L; Zhao H; Zhao C Chem Commun (Camb); 2021 Jun; 57(47):5786-5789. PubMed ID: 33998623 [TBL] [Abstract][Full Text] [Related]
57. Hydrophobic coating- and surface active solvent-mediated self-assembly of charged gold and silver nanoparticles at water-air and water-oil interfaces. Xu L; Han G; Hu J; He Y; Pan J; Li Y; Xiang J Phys Chem Chem Phys; 2009 Aug; 11(30):6490-7. PubMed ID: 19809681 [TBL] [Abstract][Full Text] [Related]
58. A facile approach for the reduction of 4‑nitrophenol and degradation of congo red using gold nanoparticles or laccase decorated hybrid inorganic nanoparticles/polymer-biomacromolecules vesicles. Wu G; Liu X; Zhou P; Wang L; Hegazy M; Huang X; Huang Y Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():524-533. PubMed ID: 30423737 [TBL] [Abstract][Full Text] [Related]
59. Self-Assembled Tetrahedral Hosts as Supramolecular Catalysts. Hong CM; Bergman RG; Raymond KN; Toste FD Acc Chem Res; 2018 Oct; 51(10):2447-2455. PubMed ID: 30272943 [TBL] [Abstract][Full Text] [Related]
60. Palladium Nanoclusters Confined in MOF@COP as a Novel Nanoreactor for Catalytic Hydrogenation. Zhu Y; Wang WD; Sun X; Fan M; Hu X; Dong Z ACS Appl Mater Interfaces; 2020 Feb; 12(6):7285-7294. PubMed ID: 31927906 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]