These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 32784788)

  • 21. Research on a Pedestrian Crossing Intention Recognition Model Based on Natural Observation Data.
    Zhang H; Liu Y; Wang C; Fu R; Sun Q; Li Z
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32210116
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drivers' visual-distracted take-over performance model and its application on adaptive adjustment of time budget.
    Li Q; Hou L; Wang Z; Wang W; Zeng C; Yuan Q; Cheng B
    Accid Anal Prev; 2021 May; 154():106099. PubMed ID: 33770718
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic is optimal: Effect of three alternative auto-complete on the usability of in-vehicle dialing displays and driver distraction.
    Zhong Q; Zhi J; Guo G
    Traffic Inj Prev; 2022; 23(1):51-56. PubMed ID: 34937441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sharing the responsibility for driver distraction across road transport systems: a systems approach to the management of distracted driving.
    Young KL; Salmon PM
    Accid Anal Prev; 2015 Jan; 74():350-9. PubMed ID: 24767853
    [TBL] [Abstract][Full Text] [Related]  

  • 25. EFFNet-CA: An Efficient Driver Distraction Detection Based on Multiscale Features Extractions and Channel Attention Mechanism.
    Khan T; Choi G; Lee S
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112176
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluating Driver Features for Cognitive Distraction Detection and Validation in Manual and Level 2 Automated Driving.
    Yang S; Wilson KM; Roady T; Kuo J; Lenné MG
    Hum Factors; 2022 Jun; 64(4):746-759. PubMed ID: 33054370
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Research on imaging method of driver's attention area based on deep neural network.
    Zhao S; Li Y; Ma J; Xing Z; Tang Z; Zhu S
    Sci Rep; 2022 Sep; 12(1):16427. PubMed ID: 36180777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural equation model analysis for the evaluation of overall driving performance: A driving simulator study focusing on driver distraction.
    Papantoniou P
    Traffic Inj Prev; 2018 Apr; 19(3):317-325. PubMed ID: 29087738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Drivers overtaking bicyclists-An examination using naturalistic driving data.
    Feng F; Bao S; Hampshire RC; Delp M
    Accid Anal Prev; 2018 Jun; 115():98-109. PubMed ID: 29550613
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identifying cognitive distraction using steering wheel reversal rates.
    Kountouriotis GK; Spyridakos P; Carsten OMJ; Merat N
    Accid Anal Prev; 2016 Nov; 96():39-45. PubMed ID: 27497055
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Machine-Learning Approach to Distinguish Passengers and Drivers Reading While Driving.
    Torres R; Ohashi O; Pessin G
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31330929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identifying distracted-driving events from on-road observations using a moving vehicle: A case study in New Jersey.
    Sajid Hasan A; Patel D; Alfaris R; Jalayer M
    Accid Anal Prev; 2022 Nov; 177():106827. PubMed ID: 36081224
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Comprehensive Survey of Driving Monitoring and Assistance Systems.
    Khan MQ; Lee S
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31174275
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Examining drivers' eye glance patterns during distracted driving: Insights from scanning randomness and glance transition matrix.
    Wang Y; Bao S; Du W; Ye Z; Sayer JR
    J Safety Res; 2017 Dec; 63():149-155. PubMed ID: 29203013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determining the risk of driver-at-fault events associated with common distraction types using naturalistic driving data.
    Liang OS; Yang CC
    J Safety Res; 2021 Dec; 79():45-50. PubMed ID: 34848019
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Driving behaviour while self-regulating mobile phone interactions: A human-machine system approach.
    Oviedo-Trespalacios O; Haque MM; King M; Demmel S
    Accid Anal Prev; 2018 Sep; 118():253-262. PubMed ID: 29653674
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mild Cognitive Impairment and driving: Does in-vehicle distraction affect driving performance?
    Beratis IN; Pavlou D; Papadimitriou E; Andronas N; Kontaxopoulou D; Fragkiadaki S; Yannis G; Papageorgiou SG
    Accid Anal Prev; 2017 Jun; 103():148-155. PubMed ID: 28441517
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of cognitive distraction on speed control in curve negotiation.
    Fu R; Zhou Y; Yuan W; Han T
    Traffic Inj Prev; 2019; 20(4):431-435. PubMed ID: 31112415
    [No Abstract]   [Full Text] [Related]  

  • 39. Predicting distracted driving: The role of individual differences in working memory.
    Louie JF; Mouloua M
    Appl Ergon; 2019 Jan; 74():154-161. PubMed ID: 30487094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Real-Time Recognition System of Driving Propensity Based on AutoNavi Navigation Data.
    Wang X; Chen L; Shi H; Han J; Wang G; Wang Q; Zhong F; Li H
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.