These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 32784796)
1. The CARF Protein MM_0565 Affects Transcription of the Casposon-Encoded Ulbricht A; Nickel L; Weidenbach K; Vargas Gebauer H; Kießling C; Förstner KU; Schmitz RA Biomolecules; 2020 Aug; 10(8):. PubMed ID: 32784796 [TBL] [Abstract][Full Text] [Related]
2. Cross-cleavage activity of Cas6b in crRNA processing of two different CRISPR-Cas systems in Methanosarcina mazei Gö1. Nickel L; Ulbricht A; Alkhnbashi OS; Förstner KU; Cassidy L; Weidenbach K; Backofen R; Schmitz RA RNA Biol; 2019 Apr; 16(4):492-503. PubMed ID: 30153081 [TBL] [Abstract][Full Text] [Related]
3. Two CRISPR-Cas systems in Methanosarcina mazei strain Gö1 display common processing features despite belonging to different types I and III. Nickel L; Weidenbach K; Jäger D; Backofen R; Lange SJ; Heidrich N; Schmitz RA RNA Biol; 2013 May; 10(5):779-91. PubMed ID: 23619576 [TBL] [Abstract][Full Text] [Related]
4. Casposase structure and the mechanistic link between DNA transposition and spacer acquisition by CRISPR-Cas. Hickman AB; Kailasan S; Genzor P; Haase AD; Dyda F Elife; 2020 Jan; 9():. PubMed ID: 31913120 [TBL] [Abstract][Full Text] [Related]
5. On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires. Silas S; Makarova KS; Shmakov S; Páez-Espino D; Mohr G; Liu Y; Davison M; Roux S; Krishnamurthy SR; Fu BXH; Hansen LL; Wang D; Sullivan MB; Millard A; Clokie MR; Bhaya D; Lambowitz AM; Kyrpides NC; Koonin EV; Fire AZ mBio; 2017 Jul; 8(4):. PubMed ID: 28698278 [TBL] [Abstract][Full Text] [Related]
6. How type II CRISPR-Cas establish immunity through Cas1-Cas2-mediated spacer integration. Xiao Y; Ng S; Nam KH; Ke A Nature; 2017 Oct; 550(7674):137-141. PubMed ID: 28869593 [TBL] [Abstract][Full Text] [Related]
7. Cas1 and Cas2 From the Type II-C CRISPR-Cas System of He Y; Wang M; Liu M; Huang L; Liu C; Zhang X; Yi H; Cheng A; Zhu D; Yang Q; Wu Y; Zhao X; Chen S; Jia R; Zhang S; Liu Y; Yu Y; Zhang L Front Cell Infect Microbiol; 2018; 8():195. PubMed ID: 29951376 [TBL] [Abstract][Full Text] [Related]
8. The casposon-encoded Cas1 protein from Aciduliprofundum boonei is a DNA integrase that generates target site duplications. Hickman AB; Dyda F Nucleic Acids Res; 2015 Dec; 43(22):10576-87. PubMed ID: 26573596 [TBL] [Abstract][Full Text] [Related]
9. Coupling transcriptional activation of CRISPR-Cas system and DNA repair genes by Csa3a in Sulfolobus islandicus. Liu T; Liu Z; Ye Q; Pan S; Wang X; Li Y; Peng W; Liang Y; She Q; Peng N Nucleic Acids Res; 2017 Sep; 45(15):8978-8992. PubMed ID: 28911114 [TBL] [Abstract][Full Text] [Related]
10. Asymmetric positioning of Cas1-2 complex and Integration Host Factor induced DNA bending guide the unidirectional homing of protospacer in CRISPR-Cas type I-E system. Yoganand KN; Sivathanu R; Nimkar S; Anand B Nucleic Acids Res; 2017 Jan; 45(1):367-381. PubMed ID: 27899566 [TBL] [Abstract][Full Text] [Related]
12. First description of small proteins encoded by spRNAs in Methanosarcina mazei strain Gö1. Prasse D; Thomsen J; De Santis R; Muntel J; Becher D; Schmitz RA Biochimie; 2015 Oct; 117():138-48. PubMed ID: 25890157 [TBL] [Abstract][Full Text] [Related]
13. Transcriptional regulator-mediated activation of adaptation genes triggers CRISPR de novo spacer acquisition. Liu T; Li Y; Wang X; Ye Q; Li H; Liang Y; She Q; Peng N Nucleic Acids Res; 2015 Jan; 43(2):1044-55. PubMed ID: 25567986 [TBL] [Abstract][Full Text] [Related]
14. Structural plasticity and in vivo activity of Cas1 from the type I-F CRISPR-Cas system. Wilkinson ME; Nakatani Y; Staals RH; Kieper SN; Opel-Reading HK; McKenzie RE; Fineran PC; Krause KL Biochem J; 2016 Apr; 473(8):1063-72. PubMed ID: 26929403 [TBL] [Abstract][Full Text] [Related]
15. Active in vivo translocation of the Methanosarcina mazei Gö1 Casposon. Gehlert FO; Nickel L; Vakirlis N; Hammerschmidt K; Vargas Gebauer HI; Kießling C; Kupczok A; Schmitz RA Nucleic Acids Res; 2023 Jul; 51(13):6927-6943. PubMed ID: 37254817 [TBL] [Abstract][Full Text] [Related]
16. Spacer acquisition from RNA mediated by a natural reverse transcriptase-Cas1 fusion protein associated with a type III-D CRISPR-Cas system in Vibrio vulnificus. González-Delgado A; Mestre MR; Martínez-Abarca F; Toro N Nucleic Acids Res; 2019 Nov; 47(19):10202-10211. PubMed ID: 31504832 [TBL] [Abstract][Full Text] [Related]
17. Distribution and phasing of sequence motifs that facilitate CRISPR adaptation. Santiago-Frangos A; Buyukyoruk M; Wiegand T; Krishna P; Wiedenheft B Curr Biol; 2021 Aug; 31(16):3515-3524.e6. PubMed ID: 34174210 [TBL] [Abstract][Full Text] [Related]
18. CRISPR repeat sequences and relative spacing specify DNA integration by Pyrococcus furiosus Cas1 and Cas2. Grainy J; Garrett S; Graveley BR; P Terns M Nucleic Acids Res; 2019 Aug; 47(14):7518-7531. PubMed ID: 31219587 [TBL] [Abstract][Full Text] [Related]
19. Recent Mobility of Casposons, Self-Synthesizing Transposons at the Origin of the CRISPR-Cas Immunity. Krupovic M; Shmakov S; Makarova KS; Forterre P; Koonin EV Genome Biol Evol; 2016 Jan; 8(2):375-86. PubMed ID: 26764427 [TBL] [Abstract][Full Text] [Related]
20. Comprehensive search for accessory proteins encoded with archaeal and bacterial type III CRISPR-cas gene cassettes reveals 39 new cas gene families. Shah SA; Alkhnbashi OS; Behler J; Han W; She Q; Hess WR; Garrett RA; Backofen R RNA Biol; 2019 Apr; 16(4):530-542. PubMed ID: 29911924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]