BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 32784927)

  • 21. Predicting protein submitochondrial locations by incorporating the pseudo-position specific scoring matrix into the general Chou's pseudo-amino acid composition.
    Qiu W; Li S; Cui X; Yu Z; Wang M; Du J; Peng Y; Yu B
    J Theor Biol; 2018 Aug; 450():86-103. PubMed ID: 29678694
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep-RBPPred: Predicting RNA binding proteins in the proteome scale based on deep learning.
    Zheng J; Zhang X; Zhao X; Tong X; Hong X; Xie J; Liu S
    Sci Rep; 2018 Oct; 8(1):15264. PubMed ID: 30323214
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiple pathways for mitochondrial protein traffic.
    Endo T; Yamano K
    Biol Chem; 2009 Aug; 390(8):723-30. PubMed ID: 19453276
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toxicity Prediction Method Based on Multi-Channel Convolutional Neural Network.
    Yuan Q; Wei Z; Guan X; Jiang M; Wang S; Zhang S; Li Z
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31533341
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting drug-drug interactions using multi-modal deep auto-encoders based network embedding and positive-unlabeled learning.
    Zhang Y; Qiu Y; Cui Y; Liu S; Zhang W
    Methods; 2020 Jul; 179():37-46. PubMed ID: 32497603
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of Submitochondrial Protein Localization in Budding Yeast Saccharomyces cerevisiae.
    Gomes F; Turano H; Ramos A; Netto LES
    J Vis Exp; 2021 Jul; (173):. PubMed ID: 34338670
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep Forest-based Prediction of Protein Subcellular Localization.
    Zhao L; Wang J; Nabil MM; Zhang J
    Curr Gene Ther; 2018; 18(5):268-274. PubMed ID: 30209998
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of 8-state protein secondary structures by a novel deep learning architecture.
    Zhang B; Li J; Lü Q
    BMC Bioinformatics; 2018 Aug; 19(1):293. PubMed ID: 30075707
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. C1orf163/RESA1 is a novel mitochondrial intermembrane space protein connected to respiratory chain assembly.
    Kozjak-Pavlovic V; Prell F; Thiede B; Götz M; Wosiek D; Ott C; Rudel T
    J Mol Biol; 2014 Feb; 426(4):908-20. PubMed ID: 24333015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How lipids modulate mitochondrial protein import.
    Böttinger L; Ellenrieder L; Becker T
    J Bioenerg Biomembr; 2016 Apr; 48(2):125-35. PubMed ID: 25690873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiple Protein Subcellular Locations Prediction Based on Deep Convolutional Neural Networks with Self-Attention Mechanism.
    Cong H; Liu H; Cao Y; Chen Y; Liang C
    Interdiscip Sci; 2022 Jun; 14(2):421-438. PubMed ID: 35066812
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Guide to Computational Methods for Predicting Mitochondrial Localization.
    Sun S; Habermann BH
    Methods Mol Biol; 2017; 1567():1-14. PubMed ID: 28276009
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Addressing data imbalance problems in ligand-binding site prediction using a variational autoencoder and a convolutional neural network.
    Nguyen TT; Nguyen DK; Ou YY
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34322702
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteome-wide prediction and annotation of mitochondrial and sub-mitochondrial proteins by incorporating domain information.
    Kumar R; Kumari B; Kumar M
    Mitochondrion; 2018 Sep; 42():11-22. PubMed ID: 29032233
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DeepAVP: A Dual-Channel Deep Neural Network for Identifying Variable-Length Antiviral Peptides.
    Li J; Pu Y; Tang J; Zou Q; Guo F
    IEEE J Biomed Health Inform; 2020 Oct; 24(10):3012-3019. PubMed ID: 32142462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DeepTP: A Deep Learning Model for Thermophilic Protein Prediction.
    Zhao J; Yan W; Yang Y
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identifying short disorder-to-order binding regions in disordered proteins with a deep convolutional neural network method.
    Fang C; Moriwaki Y; Tian A; Li C; Shimizu K
    J Bioinform Comput Biol; 2019 Feb; 17(1):1950004. PubMed ID: 30866736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Convolutional Neural Networks for ATC Classification.
    Lumini A; Nanni L
    Curr Pharm Des; 2018; 24(34):4007-4012. PubMed ID: 30417778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.