BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 32784960)

  • 1. Natural 3D-Printed Bioinks for Skin Regeneration and Wound Healing: A Systematic Review.
    Smandri A; Nordin A; Hwei NM; Chin KY; Abd Aziz I; Fauzi MB
    Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32784960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effectiveness of Bioinks and the Clinical Value of 3D Bioprinted Glioblastoma Models: A Systematic Review.
    Leong SW; Tan SC; Norhayati MN; Monif M; Lee SY
    Cancers (Basel); 2022 Apr; 14(9):. PubMed ID: 35565282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Insights into the Applications of 3D-Printed Biomaterial in Wound Healing and Prosthesis.
    Pandey A; Pragya ; Kanoujia J; Parashar P
    AAPS PharmSciTech; 2023 Sep; 24(7):191. PubMed ID: 37726576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current Insight of Printability Quality Improvement Strategies in Natural-Based Bioinks for Skin Regeneration and Wound Healing.
    Masri S; Fauzi MB
    Polymers (Basel); 2021 Mar; 13(7):. PubMed ID: 33805995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
    Yin J; Yan M; Wang Y; Fu J; Suo H
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring bioinks of extrusion-based bioprinting for cutaneous wound healing.
    Wang Y; Yuan X; Yao B; Zhu S; Zhu P; Huang S
    Bioact Mater; 2022 Nov; 17():178-194. PubMed ID: 35386443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D bioprinting of liver models: A systematic scoping review of methods, bioinks, and reporting quality.
    Ali ASM; Wu D; Bannach-Brown A; Dhamrait D; Berg J; Tolksdorf B; Lichtenstein D; Dressler C; Braeuning A; Kurreck J; Hülsemann M
    Mater Today Bio; 2024 Jun; 26():100991. PubMed ID: 38558773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printed wound constructs for skin tissue engineering: A systematic review in experimental animal models.
    de Souza A; Martignago CCS; Santo GDE; Sousa KDSJ; Cruz MA; Amaral GO; Parisi JR; Estadella D; Ribeiro DA; Granito RN; Renno ACM
    J Biomed Mater Res B Appl Biomater; 2023 Jul; 111(7):1419-1433. PubMed ID: 36840674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in the Research of Bioinks Based on Natural Collagen, Polysaccharide and Their Derivatives for Skin 3D Bioprinting.
    Xu J; Zheng S; Hu X; Li L; Li W; Parungao R; Wang Y; Nie Y; Liu T; Song K
    Polymers (Basel); 2020 May; 12(6):. PubMed ID: 32485901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pore-forming bioinks to enable spatio-temporally defined gene delivery in bioprinted tissues.
    Gonzalez-Fernandez T; Rathan S; Hobbs C; Pitacco P; Freeman FE; Cunniffe GM; Dunne NJ; McCarthy HO; Nicolosi V; O'Brien FJ; Kelly DJ
    J Control Release; 2019 May; 301():13-27. PubMed ID: 30853527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recombinant Human Collagen-Based Bioinks for the 3D Bioprinting of Full-thickness Human Skin Equivalent.
    Yang Y; Xu R; Wang C; Guo Y; Sun W; Ouyang L
    Int J Bioprint; 2022; 8(4):611. PubMed ID: 36404779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review.
    Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL
    J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of SA/Gel/C scaffold with 3D bioprinting to generate micro-nano porosity structure for skin wound healing: a detailed animal in vivo study.
    Niu C; Wang L; Ji D; Ren M; Ke D; Fu Q; Zhang K; Yang X
    Cell Regen; 2022 May; 11(1):10. PubMed ID: 35490207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Developments in 3D-(Bio)printed Hydrogels as Wound Dressings.
    Kammona O; Tsanaktsidou E; Kiparissides C
    Gels; 2024 Feb; 10(2):. PubMed ID: 38391477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks.
    Sorkio A; Koch L; Koivusalo L; Deiwick A; Miettinen S; Chichkov B; Skottman H
    Biomaterials; 2018 Jul; 171():57-71. PubMed ID: 29684677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Bioprinting of Cell-Laden Constructs Using Polysaccharide-Based Self-Healing Hydrogels.
    Kim SW; Kim DY; Roh HH; Kim HS; Lee JW; Lee KY
    Biomacromolecules; 2019 May; 20(5):1860-1866. PubMed ID: 30912929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tyrosinase-doped bioink for 3D bioprinting of living skin constructs.
    Shi Y; Xing TL; Zhang HB; Yin RX; Yang SM; Wei J; Zhang WJ
    Biomed Mater; 2018 Mar; 13(3):035008. PubMed ID: 29307874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioprinting Technologies in Tissue Engineering.
    Yilmaz B; Tahmasebifar A; Baran ET
    Adv Biochem Eng Biotechnol; 2020; 171():279-319. PubMed ID: 31468094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancing Frontiers in Bone Bioprinting.
    Ashammakhi N; Hasan A; Kaarela O; Byambaa B; Sheikhi A; Gaharwar AK; Khademhosseini A
    Adv Healthc Mater; 2019 Apr; 8(7):e1801048. PubMed ID: 30734530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ three-dimensional printing for reparative and regenerative therapy.
    Ashammakhi N; Ahadian S; Pountos I; Hu SK; Tellisi N; Bandaru P; Ostrovidov S; Dokmeci MR; Khademhosseini A
    Biomed Microdevices; 2019 Apr; 21(2):42. PubMed ID: 30955134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.