BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 32785023)

  • 1. Fabrication of 3D Printing Scaffold with Porcine Skin Decellularized Bio-Ink for Soft Tissue Engineering.
    Lee SJ; Lee JH; Park J; Kim WD; Park SA
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32785023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bio-ink in extrusion-based 3D cell printing.
    Zhao F; Cheng J; Sun M; Yu H; Wu N; Li Z; Zhang J; Li Q; Yang P; Liu Q; Hu X; Ao Y
    Biofabrication; 2020 Jul; 12(4):045011. PubMed ID: 32640428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decellularized extracellular matrix-based bio-ink with enhanced 3D printability and mechanical properties.
    Kim MK; Jeong W; Lee SM; Kim JB; Jin S; Kang HW
    Biofabrication; 2020 Jan; 12(2):025003. PubMed ID: 31783385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural Hydrogel-Based Bio-Inks for 3D Bioprinting in Tissue Engineering: A Review.
    Fatimi A; Okoro OV; Podstawczyk D; Siminska-Stanny J; Shavandi A
    Gels; 2022 Mar; 8(3):. PubMed ID: 35323292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-Dimensional Printable Hydrogel Using a Hyaluronic Acid/Sodium Alginate Bio-Ink.
    Lee SJ; Seok JM; Lee JH; Lee J; Kim WD; Park SA
    Polymers (Basel); 2021 Mar; 13(5):. PubMed ID: 33807639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Printability of Double Network Alginate-Based Hydrogel for 3D Bio-Printed Complex Structures.
    Greco I; Miskovic V; Varon C; Marraffa C; Iorio CS
    Front Bioeng Biotechnol; 2022; 10():896166. PubMed ID: 35875487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A potential dermal substitute using decellularized dermis extracellular matrix derived bio-ink.
    Won JY; Lee MH; Kim MJ; Min KH; Ahn G; Han JS; Jin S; Yun WS; Shim JH
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):644-649. PubMed ID: 30873886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of three different acidic solutions in tendon decellularized extracellular matrix bio-ink fabrication for 3D cell printing.
    Zhao F; Cheng J; Zhang J; Yu H; Dai W; Yan W; Sun M; Ding G; Li Q; Meng Q; Liu Q; Duan X; Hu X; Ao Y
    Acta Biomater; 2021 Sep; 131():262-275. PubMed ID: 34157451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demineralized Dentin Matrix Particle-Based Bio-Ink for Patient-Specific Shaped 3D Dental Tissue Regeneration.
    Han J; Jeong W; Kim MK; Nam SH; Park EK; Kang HW
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33921045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial testis: a testicular tissue extracellular matrix as a potential bio-ink for 3D printing.
    Bashiri Z; Amiri I; Gholipourmalekabadi M; Falak R; Asgari H; Maki CB; Moghaddaszadeh A; Koruji M
    Biomater Sci; 2021 May; 9(9):3465-3484. PubMed ID: 33949391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Mucin-Based Bio-Ink for 3D Printing of Objects with Anti-Biofouling Properties.
    Rickert CA; Mansi S; Fan D; Mela P; Lieleg O
    Macromol Biosci; 2023 Nov; 23(11):e2300198. PubMed ID: 37466113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of detergent type on the performance of liver decellularized extracellular matrix-based bio-inks.
    Jeong W; Kim MK; Kang HW
    J Tissue Eng; 2021; 12():2041731421997091. PubMed ID: 33717429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ECM Based Bioink for Tissue Mimetic 3D Bioprinting.
    Nam SY; Park SH
    Adv Exp Med Biol; 2018; 1064():335-353. PubMed ID: 30471042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensional Digital Light-Processing Bioprinting Using Silk Fibroin-Based Bio-Ink: Recent Advancements in Biomedical Applications.
    Sultan MT; Lee OJ; Lee JS; Park CH
    Biomedicines; 2022 Dec; 10(12):. PubMed ID: 36551978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D bioprinting of tissue units with mesenchymal stem cells, retaining their proliferative and differentiating potential, in polyphosphate-containing bio-ink.
    Neufurth M; Wang S; Schröder HC; Al-Nawas B; Wang X; Müller WEG
    Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34852334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.
    Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T
    Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity.
    Lee M; Bae K; Guillon P; Chang J; Arlov Ø; Zenobi-Wong M
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):37820-37828. PubMed ID: 30360117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-ink properties and printability for extrusion printing living cells.
    Chung JHY; Naficy S; Yue Z; Kapsa R; Quigley A; Moulton SE; Wallace GG
    Biomater Sci; 2013 Jul; 1(7):763-773. PubMed ID: 32481829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Design and Characterization of a Strong Bio-Ink for Meniscus Regeneration.
    Lu J; Huang J; Jin J; Xie C; Xue B; Lai J; Cheng B; Li L; Jiang Q
    Int J Bioprint; 2022; 8(4):600. PubMed ID: 36483752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.