These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 32785228)

  • 61. Reconstruction of sparse recurrent connectivity and inputs from the nonlinear dynamics of neuronal networks.
    Barranca VJ
    J Comput Neurosci; 2023 Feb; 51(1):43-58. PubMed ID: 35849304
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A large-scale neurocomputational model of task-oriented behavior selection and working memory in prefrontal cortex.
    Chadderdon GL; Sporns O
    J Cogn Neurosci; 2006 Feb; 18(2):242-57. PubMed ID: 16494684
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A neurodynamical model for working memory.
    Pascanu R; Jaeger H
    Neural Netw; 2011 Mar; 24(2):199-207. PubMed ID: 21036537
    [TBL] [Abstract][Full Text] [Related]  

  • 64. PsychRNN: An Accessible and Flexible Python Package for Training Recurrent Neural Network Models on Cognitive Tasks.
    Ehrlich DB; Stone JT; Brandfonbrener D; Atanasov A; Murray JD
    eNeuro; 2021; 8(1):. PubMed ID: 33328247
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework.
    Song HF; Yang GR; Wang XJ
    PLoS Comput Biol; 2016 Feb; 12(2):e1004792. PubMed ID: 26928718
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects of task complexity and age-differences on task-related functional connectivity of attentional networks.
    O'Connell MA; Basak C
    Neuropsychologia; 2018 Jun; 114():50-64. PubMed ID: 29655800
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Holding multiple items in short term memory: a neural mechanism.
    Rolls ET; Dempere-Marco L; Deco G
    PLoS One; 2013; 8(4):e61078. PubMed ID: 23613789
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A neural circuit basis for spatial working memory.
    Constantinidis C; Wang XJ
    Neuroscientist; 2004 Dec; 10(6):553-65. PubMed ID: 15534040
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Spike frequency adaptation supports network computations on temporally dispersed information.
    Salaj D; Subramoney A; Kraisnikovic C; Bellec G; Legenstein R; Maass W
    Elife; 2021 Jul; 10():. PubMed ID: 34310281
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A diverse range of factors affect the nature of neural representations underlying short-term memory.
    Orhan AE; Ma WJ
    Nat Neurosci; 2019 Feb; 22(2):275-283. PubMed ID: 30664767
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Non-equilibrium landscape and flux reveal the stability-flexibility-energy tradeoff in working memory.
    Yan H; Wang J
    PLoS Comput Biol; 2020 Oct; 16(10):e1008209. PubMed ID: 33006962
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Dendritic normalisation improves learning in sparsely connected artificial neural networks.
    Bird AD; Jedlicka P; Cuntz H
    PLoS Comput Biol; 2021 Aug; 17(8):e1009202. PubMed ID: 34370727
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Embedding multiple trajectories in simulated recurrent neural networks in a self-organizing manner.
    Liu JK; Buonomano DV
    J Neurosci; 2009 Oct; 29(42):13172-81. PubMed ID: 19846705
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effective connectivity within the frontoparietal control network differentiates cognitive control and working memory.
    Harding IH; Yücel M; Harrison BJ; Pantelis C; Breakspear M
    Neuroimage; 2015 Feb; 106():144-53. PubMed ID: 25463464
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Soft-wired long-term memory in a natural recurrent neuronal network.
    Casal MA; Galella S; Vilarroya O; Garcia-Ojalvo J
    Chaos; 2020 Jun; 30(6):061101. PubMed ID: 32611119
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Homeostatic Activity-Dependent Tuning of Recurrent Networks for Robust Propagation of Activity.
    Gjorgjieva J; Evers JF; Eglen SJ
    J Neurosci; 2016 Mar; 36(13):3722-34. PubMed ID: 27030758
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effective visual working memory capacity: an emergent effect from the neural dynamics in an attractor network.
    Dempere-Marco L; Melcher DP; Deco G
    PLoS One; 2012; 7(8):e42719. PubMed ID: 22952608
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Local inhibitory plasticity tunes macroscopic brain dynamics and allows the emergence of functional brain networks.
    Hellyer PJ; Jachs B; Clopath C; Leech R
    Neuroimage; 2016 Jan; 124(Pt A):85-95. PubMed ID: 26348562
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Learning recurrent dynamics in spiking networks.
    Kim CM; Chow CC
    Elife; 2018 Sep; 7():. PubMed ID: 30234488
    [TBL] [Abstract][Full Text] [Related]  

  • 80. NeuroLISP: High-level symbolic programming with attractor neural networks.
    Davis GP; Katz GE; Gentili RJ; Reggia JA
    Neural Netw; 2022 Feb; 146():200-219. PubMed ID: 34894482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.