BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 32785241)

  • 1. Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing.
    Ashokkumar S; Jaganathan D; Ramanathan V; Rahman H; Palaniswamy R; Kambale R; Muthurajan R
    PLoS One; 2020; 15(8):e0237018. PubMed ID: 32785241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of aromatic three-line hybrid rice using novel alleles of BADH2.
    Hui S; Li H; Mawia AM; Zhou L; Cai J; Ahmad S; Lai C; Wang J; Jiao G; Xie L; Shao G; Sheng Z; Tang S; Wang J; Wei X; Hu S; Hu P
    Plant Biotechnol J; 2022 Jan; 20(1):59-74. PubMed ID: 34465003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristic and inheritance analysis of targeted mutagenesis mediated by genome editing in rice.
    Tang L; Li YK; Zhang D; Mao BG; Lv QM; Hu YY; Shao Y; Peng Y; Zhao BR; Xia ST
    Yi Chuan; 2016 Aug; 38(8):746-55. PubMed ID: 27531613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of aroma in three-line hybrid rice through CRISPR/Cas9 editing of BETAINE ALDEHYDE DEHYDROGENASE2 (OsBADH2).
    Liao Y; Li M; Wu H; Liao Y; Xin J; Yuan X; Li Y; Wei A; Zou X; Guo D; Xue Z; Zhu G; Wang Z; Xu P; Zhang H; Chen X; Du K; Zhou H; Xia D; Ali A; Wu X
    Physiol Plant; 2024; 176(1):e14206. PubMed ID: 38356346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system.
    Xiong X; Liu W; Jiang J; Xu L; Huang L; Cao J
    Mol Genet Genomics; 2019 Oct; 294(5):1251-1261. PubMed ID: 31129735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice.
    Shen L; Hua Y; Fu Y; Li J; Liu Q; Jiao X; Xin G; Wang J; Wang X; Yan C; Wang K
    Sci China Life Sci; 2017 May; 60(5):506-515. PubMed ID: 28349304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creation of Two-Line Fragrant Glutinous Hybrid Rice by Editing the
    Tian Y; Zhou Y; Gao G; Zhang Q; Li Y; Lou G; He Y
    Int J Mol Sci; 2023 Jan; 24(1):. PubMed ID: 36614293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNAi-directed downregulation of OsBADH2 results in aroma (2-acetyl-1-pyrroline) production in rice (Oryza sativa L.).
    Niu X; Tang W; Huang W; Ren G; Wang Q; Luo D; Xiao Y; Yang S; Wang F; Lu BR; Gao F; Lu T; Liu Y
    BMC Plant Biol; 2008 Oct; 8():100. PubMed ID: 18840300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice.
    Meng X; Hu X; Liu Q; Song X; Gao C; Li J; Wang K
    Sci China Life Sci; 2018 Jan; 61(1):122-125. PubMed ID: 29285711
    [No Abstract]   [Full Text] [Related]  

  • 11. Genome Editing by CRISPR/Cas9 in Sorghum Through Biolistic Bombardment.
    Liu G; Li J; Godwin ID
    Methods Mol Biol; 2019; 1931():169-183. PubMed ID: 30652290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creating Large Chromosomal Deletions in Rice Using CRISPR/Cas9.
    Li R; Char SN; Yang B
    Methods Mol Biol; 2019; 1917():47-61. PubMed ID: 30610627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of rice essential genes by characterizing a CRISPR-edited mutation of closely related rice MAP kinase genes.
    Minkenberg B; Xie K; Yang Y
    Plant J; 2017 Feb; 89(3):636-648. PubMed ID: 27747971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of targeted mutant rice using a CRISPR-Cpf1 system.
    Xu R; Qin R; Li H; Li D; Li L; Wei P; Yang J
    Plant Biotechnol J; 2017 Jun; 15(6):713-717. PubMed ID: 27875019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology.
    Shan Q; Zhang Y; Chen K; Zhang K; Gao C
    Plant Biotechnol J; 2015 Aug; 13(6):791-800. PubMed ID: 25599829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice.
    Yin X; Biswal AK; Dionora J; Perdigon KM; Balahadia CP; Mazumdar S; Chater C; Lin HC; Coe RA; Kretzschmar T; Gray JE; Quick PW; Bandyopadhyay A
    Plant Cell Rep; 2017 May; 36(5):745-757. PubMed ID: 28349358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants.
    Ma X; Zhang Q; Zhu Q; Liu W; Chen Y; Qiu R; Wang B; Yang Z; Li H; Lin Y; Xie Y; Shen R; Chen S; Wang Z; Chen Y; Guo J; Chen L; Zhao X; Dong Z; Liu YG
    Mol Plant; 2015 Aug; 8(8):1274-84. PubMed ID: 25917172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice.
    Tang X; Liu G; Zhou J; Ren Q; You Q; Tian L; Xin X; Zhong Z; Liu B; Zheng X; Zhang D; Malzahn A; Gong Z; Qi Y; Zhang T; Zhang Y
    Genome Biol; 2018 Jul; 19(1):84. PubMed ID: 29973285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation.
    Zhang H; Zhang J; Wei P; Zhang B; Gou F; Feng Z; Mao Y; Yang L; Zhang H; Xu N; Zhu JK
    Plant Biotechnol J; 2014 Aug; 12(6):797-807. PubMed ID: 24854982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9 for Mutagenesis in Rice.
    Char SN; Li R; Yang B
    Methods Mol Biol; 2019; 1864():279-293. PubMed ID: 30415343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.