BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 32785268)

  • 1. What's the catch? Profiling the benefits and costs associated with marine protected areas and displaced fishing in the Scotia Sea.
    Klein ES; Watters GM
    PLoS One; 2020; 15(8):e0237425. PubMed ID: 32785268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing feedback and spatial approaches to advance ecosystem-based fisheries management in a changing Antarctic.
    Klein ES; Watters GM
    PLoS One; 2020; 15(9):e0231954. PubMed ID: 32898163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impacts of rising sea temperature on krill increase risks for predators in the Scotia Sea.
    Klein ES; Hill SL; Hinke JT; Phillips T; Watters GM
    PLoS One; 2018; 13(1):e0191011. PubMed ID: 29385153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying Risk: Concurrent Overlap of the Antarctic Krill Fishery with Krill-Dependent Predators in the Scotia Sea.
    Hinke JT; Cossio AM; Goebel ME; Reiss CS; Trivelpiece WZ; Watters GM
    PLoS One; 2017; 12(1):e0170132. PubMed ID: 28085943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Scotia Sea krill fishery and its possible impacts on dependent predators: modeling localized depletion of prey.
    Plagányi EE; Butterworth DS
    Ecol Appl; 2012 Apr; 22(3):748-61. PubMed ID: 22645808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. At-Sea Distribution and Prey Selection of Antarctic Petrels and Commercial Krill Fisheries.
    Descamps S; Tarroux A; Cherel Y; Delord K; Godø OR; Kato A; Krafft BA; Lorentsen SH; Ropert-Coudert Y; Skaret G; Varpe Ø
    PLoS One; 2016; 11(8):e0156968. PubMed ID: 27533327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decision-making for ecosystem-based management: evaluating options for a krill fishery with an ecosystem dynamics model.
    Watters GM; Hill SL; Hinke JT; Matthews J; Reid K
    Ecol Appl; 2013 Jun; 23(4):710-25. PubMed ID: 23865224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Male Antarctic fur seals: neglected food competitors of bioindicator species in the context of an increasing Antarctic krill fishery.
    Lowther AD; Staniland I; Lydersen C; Kovacs KM
    Sci Rep; 2020 Oct; 10(1):18436. PubMed ID: 33116190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Spatial point patterns of Antarctic krill fishery in the northern Antarctic Peninsula].
    Yang XM; Li YX; Zhu GP
    Ying Yong Sheng Tai Xue Bao; 2016 Dec; 27(12):4052-4058. PubMed ID: 29704367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size selection of Antarctic krill (Euphausia superba) in trawls.
    Krag LA; Herrmann B; Iversen SA; Engås A; Nordrum S; Krafft BA
    PLoS One; 2014; 9(8):e102168. PubMed ID: 25105960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Habitat partitioning in Antarctic krill: Spawning hotspots and nursery areas.
    Perry FA; Atkinson A; Sailley SF; Tarling GA; Hill SL; Lucas CH; Mayor DJ
    PLoS One; 2019; 14(7):e0219325. PubMed ID: 31339923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential climate change effects on the habitat of antarctic krill in the weddell quadrant of the southern ocean.
    Hill SL; Phillips T; Atkinson A
    PLoS One; 2013; 8(8):e72246. PubMed ID: 23991072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that spillover from Marine Protected Areas benefits the spiny lobster (Panulirus interruptus) fishery in southern California.
    Lenihan HS; Gallagher JP; Peters JR; Stier AC; Hofmeister JKK; Reed DC
    Sci Rep; 2021 Jan; 11(1):2663. PubMed ID: 33514853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking the response of industrial fishing fleets to large marine protected areas in the Pacific Ocean.
    White TD; Ong T; Ferretti F; Block BA; McCauley DJ; Micheli F; De Leo GA
    Conserv Biol; 2020 Dec; 34(6):1571-1578. PubMed ID: 33031635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An approach for integrating economic impact analysis into the evaluation of potential marine protected area sites.
    Dalton TM
    J Environ Manage; 2004 Apr; 70(4):333-49. PubMed ID: 15016442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying Antarctic krill connectivity across the West Antarctic Peninsula and its role in large-scale Pygoscelis penguin population dynamics.
    Gallagher KL; Dinniman MS; Lynch HJ
    Sci Rep; 2023 Jul; 13(1):12072. PubMed ID: 37495764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating the average distribution of Antarctic krill
    Warwick-Evans V; Fielding S; Reiss CS; Watters GM; Trathan PN
    Polar Biol; 2022; 45(5):857-871. PubMed ID: 35673679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sampling mobile oceanic fishes and sharks: implications for fisheries and conservation planning.
    Letessier TB; Bouchet PJ; Meeuwig JJ
    Biol Rev Camb Philos Soc; 2017 May; 92(2):627-646. PubMed ID: 26680116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centred food web.
    Murphy EJ; Watkins JL; Trathan PN; Reid K; Meredith MP; Thorpe SE; Johnston NM; Clarke A; Tarling GA; Collins MA; Forcada J; Shreeve RS; Atkinson A; Korb R; Whitehouse MJ; Ward P; Rodhouse PG; Enderlein P; Hirst AG; Martin AR; Hill SL; Staniland IJ; Pond DW; Briggs DR; Cunningham NJ; Fleming AH
    Philos Trans R Soc Lond B Biol Sci; 2007 Jan; 362(1477):113-48. PubMed ID: 17405210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Spatial-temporal and environmental effects of catch rate on Antarctic krill fishery in the South Georgia Island in the austral winter season based on the fine scale data].
    Zhu Guo-Ping ; Liu ZJ; Xu GD; Zhang JC; Meng T; Huang HL; Xu YY; Zhu XY; Xu LX
    Ying Yong Sheng Tai Xue Bao; 2014 Aug; 25(8):2397-404. PubMed ID: 25509095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.