These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32785414)

  • 1. The ratio of hydrogelator to precursor controls the enzymatic hydrogelation of a branched peptide.
    Guo J; He H; Kim BJ; Wang J; Yi M; Lin C; Xu B
    Soft Matter; 2020 Nov; 16(44):10101-10105. PubMed ID: 32785414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Branched peptides for enzymatic supramolecular hydrogelation.
    He H; Wang H; Zhou N; Yang D; Xu B
    Chem Commun (Camb); 2017 Dec; 54(1):86-89. PubMed ID: 29211067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme-instructed morphological transition of the supramolecular assemblies of branched peptides.
    Yang D; He H; Xu B
    Beilstein J Org Chem; 2020; 16():2709-2718. PubMed ID: 33214796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic Noncovalent Synthesis for Mitochondrial Genetic Engineering of Cancer Cells.
    He H; Lin X; Wu D; Wang J; Guo J; Green DR; Zhang H; Xu B
    Cell Rep Phys Sci; 2020 Dec; 1(12):. PubMed ID: 33511360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid Hydrogels from Nongelling Polymers Using a Fibrous Peptide Hydrogelator at Low Concentrations.
    Wei J; Lin M; Fu X; Sun J
    Langmuir; 2022 Aug; 38(33):10305-10312. PubMed ID: 35960930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic Cleavage of Branched Peptides for Targeting Mitochondria.
    He H; Wang J; Wang H; Zhou N; Yang D; Green DR; Xu B
    J Am Chem Soc; 2018 Jan; 140(4):1215-1218. PubMed ID: 29328651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The conjugation of nonsteroidal anti-inflammatory drugs (NSAID) to small peptides for generating multifunctional supramolecular nanofibers/hydrogels.
    Li J; Kuang Y; Shi J; Gao Y; Zhou J; Xu B
    Beilstein J Org Chem; 2013; 9():908-17. PubMed ID: 23766806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A General Method to Prepare Peptide-Based Supramolecular Hydrogels.
    Yuan D; Shi J; Zhou N; Xu B
    Methods Mol Biol; 2018; 1777():175-180. PubMed ID: 29744834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications.
    Fichman G; Gazit E
    Acta Biomater; 2014 Apr; 10(4):1671-82. PubMed ID: 23958781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Branched peptides integrate into self-assembled nanostructures and enhance biomechanics of peptidic hydrogels.
    Pugliese R; Fontana F; Marchini A; Gelain F
    Acta Biomater; 2018 Jan; 66():258-271. PubMed ID: 29128535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural transformation and physical properties of a hydrogel-forming peptide studied by NMR, transmission electron microscopy, and dynamic rheometer.
    Huang H; Herrera AI; Luo Z; Prakash O; Sun XS
    Biophys J; 2012 Sep; 103(5):979-88. PubMed ID: 23009847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterotypic Supramolecular Hydrogels Formed by Noncovalent Interactions in Inflammasomes.
    Shy AN; Wang H; Feng Z; Xu B
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33375296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of peptide-based bolaamphiphiles exhibiting heat-set hydrogelation via retro-Diels-Alder reaction.
    Ochi R; Nishida T; Ikeda M; Hamachi I
    J Mater Chem B; 2014 Mar; 2(11):1464-1469. PubMed ID: 32261365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self assembly and hydrogelation of N-terminal modified tetrapeptide for sustained release and synergistic action of antibacterial drugs against methicillin resistant S. aureus.
    Prasad Dewangan R; Kumari S; Kumar Mahto A; Jain A; Pasha S
    Bioorg Chem; 2020 Sep; 102():104052. PubMed ID: 32659487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bridging Rigidity and Flexibility: Modulation of Supramolecular Hydrogels by Metal Complexation.
    Stach OS; Breul K; Berač CM; Urschbach M; Seiffert S; Besenius P
    Macromol Rapid Commun; 2022 Jun; 43(12):e2100473. PubMed ID: 34505725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic control of hydrogel crosslinking via sortase-mediated reversible transpeptidation.
    Arkenberg MR; Moore DM; Lin CC
    Acta Biomater; 2019 Jan; 83():83-95. PubMed ID: 30415064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic Noncovalent Synthesis of Supramolecular Soft Matter for Biomedical Applications.
    Shy AN; Kim BJ; Xu B
    Matter; 2019 Nov; 1(5):1127-1147. PubMed ID: 32104791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel nanostructured supramolecular hydrogel self-assembled from tetraphenylethylene-capped dipeptides.
    Yeh MY; Huang CW; Chang JW; Huang YT; Lin JH; Hsu SM; Hung SC; Lin HC
    Soft Matter; 2016 Aug; 12(30):6347-51. PubMed ID: 27381445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of mono
    Rani A; De Leon-Rodriguez LM; Kavianinia I; McGillivray DJ; Williams DE; Brimble MA
    Org Biomol Chem; 2021 Apr; 19(16):3665-3677. PubMed ID: 33908574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intramolecular interactions of a phenyl/perfluorophenyl pair in the formation of supramolecular nanofibers and hydrogels.
    Hsu SM; Lin YC; Chang JW; Liu YH; Lin HC
    Angew Chem Int Ed Engl; 2014 Feb; 53(7):1921-7. PubMed ID: 24420005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.