These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32785862)

  • 1. Preclinical Performance Evaluation of a Robotic Endoscope for Non-Contact Laser Surgery.
    Kundrat D; Graesslin R; Schoob A; Friedrich DT; Scheithauer MO; Hoffmann TK; Ortmaier T; Kahrs LA; Schuler PJ
    Ann Biomed Eng; 2021 Feb; 49(2):585-600. PubMed ID: 32785862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A robotic microsurgical forceps for transoral laser microsurgery.
    Chauhan M; Deshpande N; Pacchierotti C; Meli L; Prattichizzo D; Caldwell DG; Mattos LS
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):321-333. PubMed ID: 30465304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A new flexible endoscopy-system for the transoral resection of head and neck tumors].
    Mattheis S; Lang S
    Laryngorhinootologie; 2015 Jan; 94(1):25-8. PubMed ID: 25054545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Teleoperated tubular continuum robots for transoral surgery - feasibility in a porcine larynx model.
    Friedrich DT; Modes V; Hoffmann TK; Greve J; Schuler PJ; Burgner-Kahrs J
    Int J Med Robot; 2018 Oct; 14(5):e1928. PubMed ID: 29923349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A european multicenter study evaluating the flex robotic system in transoral robotic surgery.
    Lang S; Mattheis S; Hasskamp P; Lawson G; Güldner C; Mandapathil M; Schuler P; Hoffmann T; Scheithauer M; Remacle M
    Laryngoscope; 2017 Feb; 127(2):391-395. PubMed ID: 27783427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential Advantages of a Single-Port, Operator-Controlled Flexible Endoscope System for Transoral Surgery of the Larynx.
    Friedrich DT; Scheithauer MO; Greve J; Duvvuri U; Sommer F; Hoffmann TK; Schuler PJ
    Ann Otol Rhinol Laryngol; 2015 Aug; 124(8):655-62. PubMed ID: 25757631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereo vision-based tracking of soft tissue motion with application to online ablation control in laser microsurgery.
    Schoob A; Kundrat D; Kahrs LA; Ortmaier T
    Med Image Anal; 2017 Aug; 40():80-95. PubMed ID: 28624755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cadaveric feasibility study of a teleoperated parallel continuum robot with variable stiffness for transoral surgery.
    Li C; Gu X; Xiao X; Lim CM; Ren H
    Med Biol Eng Comput; 2020 Sep; 58(9):2063-2069. PubMed ID: 32642908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transoral Robotic Surgical Proficiency Via Real-Time Tactile Collision Awareness System.
    Mendelsohn AH; Kim C; Song J; Singh A; Le T; Abiri A; Berke GS; Geoghegan R
    Laryngoscope; 2020 Dec; 130 Suppl 6():S1-S17. PubMed ID: 32865822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and experiments of a continuum robotic system for transoral laryngeal surgery.
    Feng F; Zhou Y; Hong W; Li K; Xie L
    Int J Comput Assist Radiol Surg; 2022 Mar; 17(3):497-505. PubMed ID: 35028888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Three-Limb Teleoperated Robotic System with Foot Control for Flexible Endoscopic Surgery.
    Huang Y; Lai W; Cao L; Liu J; Li X; Burdet E; Phee SJ
    Ann Biomed Eng; 2021 Sep; 49(9):2282-2296. PubMed ID: 33834351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adding Flexible Instrumentation to a Curved Videolaryngoscope: A Novel Tool for Laryngeal Surgery.
    Schild LR; Böhm F; Boos M; Kahrs LA; Coburger J; Greve J; Dürselen L; Hoffmann TK; Schuler PJ
    Laryngoscope; 2021 Feb; 131(2):E561-E568. PubMed ID: 32585046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Compliant Transoral Surgical Robotic System Based on a Parallel Flexible Mechanism.
    Gu X; Li C; Xiao X; Lim CM; Ren H
    Ann Biomed Eng; 2019 Jun; 47(6):1329-1344. PubMed ID: 30863909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cadaver head holder for transoral surgical simulation.
    Chang J; Wu X; Kahng PW; Halter RJ; Paydarfar JA
    Laryngoscope; 2018 Oct; 128(10):2341-2344. PubMed ID: 29536544
    [No Abstract]   [Full Text] [Related]  

  • 15. Preclinical experience with a novel single-port platform for transoral surgery.
    Funk EK; Weissbrod P; Horgan S; Orosco RK; Califano JA
    Surg Endosc; 2021 Aug; 35(8):4857-4864. PubMed ID: 33712940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Laser surgery and phototherapy of the larynx and laryngopharynx under indirect laryngoscopy].
    Pluzhnikov MS; Lopatko AI; Mostafa Ibrakhem
    Vestn Otorinolaringol; 1992; (1):20-4. PubMed ID: 1317070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft tissue motion tracking with application to tablet-based incision planning in laser surgery.
    Schoob A; Laves MH; Kahrs LA; Ortmaier T
    Int J Comput Assist Radiol Surg; 2016 Dec; 11(12):2325-2337. PubMed ID: 27250855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of resection tools suited for transoral robot-assisted surgery.
    Hoffmann TK; Schuler PJ; Bankfalvi A; Greve J; Heusgen L; Lang S; Mattheis S
    Eur Arch Otorhinolaryngol; 2014 May; 271(5):1207-13. PubMed ID: 23846665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pre-Clinical Experience With the VITOM 3D and the ARTip Cruise System for Micro-Laryngeal Surgery.
    De Virgilio A; Costantino A; Mondello T; Conti V; Pirola F; Russo E; Mercante G; Spriano G
    Laryngoscope; 2021 Jan; 131(1):136-138. PubMed ID: 32297976
    [No Abstract]   [Full Text] [Related]  

  • 20. Critical analysis of robotic surgery for laryngeal tumours.
    Esteban F; Menoyo A; Abrante A
    Acta Otorrinolaringol Esp; 2014; 65(6):365-72. PubMed ID: 24626048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.