These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 32785980)
1. Progress and outlook in studying the substrate specificities of PARPs and related enzymes. Suskiewicz MJ; Palazzo L; Hughes R; Ahel I FEBS J; 2021 Apr; 288(7):2131-2142. PubMed ID: 32785980 [TBL] [Abstract][Full Text] [Related]
2. HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation. Suskiewicz MJ; Zobel F; Ogden TEH; Fontana P; Ariza A; Yang JC; Zhu K; Bracken L; Hawthorne WJ; Ahel D; Neuhaus D; Ahel I Nature; 2020 Mar; 579(7800):598-602. PubMed ID: 32028527 [TBL] [Abstract][Full Text] [Related]
3. PARP Power: A Structural Perspective on PARP1, PARP2, and PARP3 in DNA Damage Repair and Nucleosome Remodelling. van Beek L; McClay É; Patel S; Schimpl M; Spagnolo L; Maia de Oliveira T Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34066057 [TBL] [Abstract][Full Text] [Related]
4. Dual function of HPF1 in the modulation of PARP1 and PARP2 activities. Kurgina TA; Moor NA; Kutuzov MM; Naumenko KN; Ukraintsev AA; Lavrik OI Commun Biol; 2021 Nov; 4(1):1259. PubMed ID: 34732825 [TBL] [Abstract][Full Text] [Related]
5. [Poly(ADP-Ribose) Polymerases 1 and 2: Classical Functions and Interaction with New Histone Poly(ADP-Ribosyl)ation Factor HPF1]. Kurgina TA; Lavrik OI Mol Biol (Mosk); 2023; 57(2):254-268. PubMed ID: 37000654 [TBL] [Abstract][Full Text] [Related]
6. HPF1 dynamically controls the PARP1/2 balance between initiating and elongating ADP-ribose modifications. Langelier MF; Billur R; Sverzhinsky A; Black BE; Pascal JM Nat Commun; 2021 Nov; 12(1):6675. PubMed ID: 34795260 [TBL] [Abstract][Full Text] [Related]
7. HPF1 remodels the active site of PARP1 to enable the serine ADP-ribosylation of histones. Sun FH; Zhao P; Zhang N; Kong LL; Wong CCL; Yun CH Nat Commun; 2021 Feb; 12(1):1028. PubMed ID: 33589610 [TBL] [Abstract][Full Text] [Related]
9. New perspectives on the plant PARP family: Arabidopsis PARP3 is inactive, and PARP1 exhibits predominant poly (ADP-ribose) polymerase activity in response to DNA damage. Gu Z; Pan W; Chen W; Lian Q; Wu Q; Lv Z; Cheng X; Ge X BMC Plant Biol; 2019 Aug; 19(1):364. PubMed ID: 31426748 [TBL] [Abstract][Full Text] [Related]
10. Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Kleine H; Poreba E; Lesniewicz K; Hassa PO; Hottiger MO; Litchfield DW; Shilton BH; Lüscher B Mol Cell; 2008 Oct; 32(1):57-69. PubMed ID: 18851833 [TBL] [Abstract][Full Text] [Related]
11. Characterization of DNA ADP-ribosyltransferase activities of PARP2 and PARP3: new insights into DNA ADP-ribosylation. Zarkovic G; Belousova EA; Talhaoui I; Saint-Pierre C; Kutuzov MM; Matkarimov BT; Biard D; Gasparutto D; Lavrik OI; Ishchenko AA Nucleic Acids Res; 2018 Mar; 46(5):2417-2431. PubMed ID: 29361132 [TBL] [Abstract][Full Text] [Related]
12. A Single-Molecule Atomic Force Microscopy Study of PARP1 and PARP2 Recognition of Base Excision Repair DNA Intermediates. Sukhanova MV; Hamon L; Kutuzov MM; Joshi V; Abrakhi S; Dobra I; Curmi PA; Pastre D; Lavrik OI J Mol Biol; 2019 Jul; 431(15):2655-2673. PubMed ID: 31129062 [TBL] [Abstract][Full Text] [Related]
13. Insight into DNA substrate specificity of PARP1-catalysed DNA poly(ADP-ribosyl)ation. Matta E; Kiribayeva A; Khassenov B; Matkarimov BT; Ishchenko AA Sci Rep; 2020 Feb; 10(1):3699. PubMed ID: 32111879 [TBL] [Abstract][Full Text] [Related]
14. Common and unique genetic interactions of the poly(ADP-ribose) polymerases PARP1 and PARP2 with DNA double-strand break repair pathways. Ghosh R; Roy S; Kamyab J; Danzter F; Franco S DNA Repair (Amst); 2016 Sep; 45():56-62. PubMed ID: 27373144 [TBL] [Abstract][Full Text] [Related]
15. Bridging of DNA breaks activates PARP2-HPF1 to modify chromatin. Bilokapic S; Suskiewicz MJ; Ahel I; Halic M Nature; 2020 Sep; 585(7826):609-613. PubMed ID: 32939087 [TBL] [Abstract][Full Text] [Related]
16. Poly(ADP-ribose) polymerases covalently modify strand break termini in DNA fragments in vitro. Talhaoui I; Lebedeva NA; Zarkovic G; Saint-Pierre C; Kutuzov MM; Sukhanova MV; Matkarimov BT; Gasparutto D; Saparbaev MK; Lavrik OI; Ishchenko AA Nucleic Acids Res; 2016 Nov; 44(19):9279-9295. PubMed ID: 27471034 [TBL] [Abstract][Full Text] [Related]
17. Dna is a New Target of Parp3. Belousova EA; Ishchenko АA; Lavrik OI Sci Rep; 2018 Mar; 8(1):4176. PubMed ID: 29520010 [TBL] [Abstract][Full Text] [Related]
19. Dispensability of HPF1 for cellular removal of DNA single-strand breaks. Hrychova K; Burdova K; Polackova Z; Giamaki D; Valtorta B; Brazina J; Krejcikova K; Kuttichova B; Caldecott KW; Hanzlikova H Nucleic Acids Res; 2024 Oct; 52(18):10986-10998. PubMed ID: 39162207 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of the catalytic domain of human PARP2 in complex with PARP inhibitor ABT-888. Karlberg T; Hammarström M; Schütz P; Svensson L; Schüler H Biochemistry; 2010 Feb; 49(6):1056-8. PubMed ID: 20092359 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]