These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 32786097)
1. Mean Species Abundance as a Measure of Ecotoxicological Risk. Hoeks S; Huijbregts MAJ; Douziech M; Hendriks AJ; Oldenkamp R Environ Toxicol Chem; 2020 Nov; 39(11):2304-2313. PubMed ID: 32786097 [TBL] [Abstract][Full Text] [Related]
2. Characterizing Freshwater Ecotoxicity of More Than 9000 Chemicals by Combining Different Levels of Available Measured Test Data with In Silico Predictions. Douziech M; Oginah SA; Golsteijn L; Hauschild MZ; Jolliet O; Owsianiak M; Posthuma L; Fantke P Environ Toxicol Chem; 2024 Aug; 43(8):1914-1927. PubMed ID: 38860654 [TBL] [Abstract][Full Text] [Related]
3. Can Chemical Toxicity in Saltwater Be Predicted from Toxicity in Freshwater? A Comprehensive Evaluation Using Species Sensitivity Distributions. Yanagihara M; Hiki K; Iwasaki Y Environ Toxicol Chem; 2022 Aug; 41(8):2021-2027. PubMed ID: 35502940 [TBL] [Abstract][Full Text] [Related]
4. Derivation of freshwater quality criteria for zinc using interspecies correlation estimation models to protect aquatic life in China. Feng CL; Wu FC; Dyer SD; Chang H; Zhao XL Chemosphere; 2013 Jan; 90(3):1177-83. PubMed ID: 23058200 [TBL] [Abstract][Full Text] [Related]
5. Sensitivity of a Large and Representative Sample of Antarctic Marine Invertebrates to Metals. Kefford BJ; King CK; Wasley J; Riddle MJ; Nugegoda D Environ Toxicol Chem; 2019 Jul; 38(7):1560-1568. PubMed ID: 30900771 [TBL] [Abstract][Full Text] [Related]
6. The effects of a mixture of copper, nickel, and zinc on the structure and function of a freshwater planktonic community. Van Regenmortel T; Van de Perre D; Janssen CR; De Schamphelaere KAC Environ Toxicol Chem; 2018 Sep; 37(9):2380-2400. PubMed ID: 29870110 [TBL] [Abstract][Full Text] [Related]
7. Improving substance information in USEtox Saouter E; Aschberger K; Fantke P; Hauschild MZ; Bopp SK; Kienzler A; Paini A; Pant R; Secchi M; Sala S Environ Toxicol Chem; 2017 Dec; 36(12):3450-3462. PubMed ID: 28618056 [TBL] [Abstract][Full Text] [Related]
8. Illustrating a Species Sensitivity Distribution for Nano- and Microplastic Particles Using Bayesian Hierarchical Modeling. Takeshita KM; Iwasaki Y; Sinclair TM; Hayashi TI; Naito W Environ Toxicol Chem; 2022 Apr; 41(4):954-960. PubMed ID: 35226391 [TBL] [Abstract][Full Text] [Related]
9. Extrapolating Metal (Cu, Ni, Zn) Toxicity from Individuals to Populations Across Daphnia Species Using Mechanistic Models: The Roles of Uncertainty Propagation and Combined Physiological Modes of Action. Hansul S; Fettweis A; Smolders E; Schamphelaere K Environ Toxicol Chem; 2024 Feb; 43(2):338-358. PubMed ID: 37921584 [TBL] [Abstract][Full Text] [Related]
10. Species sensitivity distributions for use in environmental protection, assessment, and management of aquatic ecosystems for 12 386 chemicals. Posthuma L; van Gils J; Zijp MC; van de Meent D; de Zwart D Environ Toxicol Chem; 2019 Apr; 38(4):905-917. PubMed ID: 30675920 [TBL] [Abstract][Full Text] [Related]
11. Future needs and recommendations in the development of species sensitivity distributions: Estimating toxicity thresholds for aquatic ecological communities and assessing impacts of chemical exposures. Belanger S; Barron M; Craig P; Dyer S; Galay-Burgos M; Hamer M; Marshall S; Posthuma L; Raimondo S; Whitehouse P Integr Environ Assess Manag; 2017 Jul; 13(4):664-674. PubMed ID: 27531323 [TBL] [Abstract][Full Text] [Related]
12. Comparison of four methods for bioavailability-based risk assessment of mixtures of Cu, Zn, and Ni in freshwater. Van Regenmortel T; Nys C; Janssen CR; Lofts S; De Schamphelaere KAC Environ Toxicol Chem; 2017 Aug; 36(8):2123-2138. PubMed ID: 28112432 [TBL] [Abstract][Full Text] [Related]
13. Augmenting aquatic species sensitivity distributions with interspecies toxicity estimation models. Awkerman JA; Raimondo S; Jackson CR; Barron MG Environ Toxicol Chem; 2014 Mar; 33(3):688-95. PubMed ID: 24214839 [TBL] [Abstract][Full Text] [Related]
14. Derivation of water quality criteria of phenanthrene using interspecies correlation estimation models for aquatic life in China. Wu J; Liu Z; Yan Z; Yi X Environ Sci Pollut Res Int; 2015 Jun; 22(12):9457-63. PubMed ID: 25608455 [TBL] [Abstract][Full Text] [Related]
15. Combined effects of interspecies interaction, temperature, and zinc on Daphnia longispina population dynamics. Van de Perre D; Janssen CR; De Schamphelaere KAC Environ Toxicol Chem; 2018 Jun; 37(6):1668-1678. PubMed ID: 29480549 [TBL] [Abstract][Full Text] [Related]
16. Life-cycle studies with 2 marine species and bisphenol A: The mysid shrimp (Americamysis bahia) and sheepshead minnow (Cyprinodon variegatus). Mihaich E; Staples C; Ortego L; Klečka G; Woelz J; Dimond S; Hentges S Environ Toxicol Chem; 2018 Feb; 37(2):398-410. PubMed ID: 28834561 [TBL] [Abstract][Full Text] [Related]
18. Development and application of the SSD approach in scientific case studies for ecological risk assessment. Del Signore A; Hendriks AJ; Lenders HJ; Leuven RS; Breure AM Environ Toxicol Chem; 2016 Sep; 35(9):2149-61. PubMed ID: 27144499 [TBL] [Abstract][Full Text] [Related]
19. QSAR-Based Estimation of Species Sensitivity Distribution Parameters: An Exploratory Investigation. Hoondert RPJ; Oldenkamp R; de Zwart D; van de Meent D; Posthuma L Environ Toxicol Chem; 2019 Dec; 38(12):2764-2770. PubMed ID: 31553801 [TBL] [Abstract][Full Text] [Related]
20. Correcting for Phylogenetic Autocorrelation in Species Sensitivity Distributions. Moore DR; Priest CD; Galic N; Brain RA; Rodney SI Integr Environ Assess Manag; 2020 Jan; 16(1):53-65. PubMed ID: 31433110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]