These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 32786103)

  • 1. Insights into Protein Stability in Cell Lysate by
    Welte H; Kovermann M
    Chembiochem; 2020 Dec; 21(24):3575-3579. PubMed ID: 32786103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What does fluorine do to a protein? Thermodynamic, and highly-resolved structural insights into fluorine-labelled variants of the cold shock protein.
    Welte H; Zhou T; Mihajlenko X; Mayans O; Kovermann M
    Sci Rep; 2020 Feb; 10(1):2640. PubMed ID: 32060391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted expression and purification of fluorine labelled cold shock protein B by using an auxotrophic strategy.
    Welte H; Kovermann M
    Protein Expr Purif; 2019 May; 157():86-91. PubMed ID: 30738179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorine NMR Spectroscopy Enables to Quantify the Affinity Between DNA and Proteins in Cell Lysate.
    Welte H; Sinn P; Kovermann M
    Chembiochem; 2021 Oct; 22(20):2973-2980. PubMed ID: 34390111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular Crowding Tunes Protein Stability by Manipulating Solvent Accessibility.
    Köhn B; Kovermann M
    Chembiochem; 2019 Mar; 20(6):759-763. PubMed ID: 30508270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All atom insights into the impact of crowded environments on protein stability by NMR spectroscopy.
    Köhn B; Kovermann M
    Nat Commun; 2020 Nov; 11(1):5760. PubMed ID: 33188202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of entropy in protein thermostability: folding kinetics of a hyperthermophilic cold shock protein at high temperatures using 19F NMR.
    Schuler B; Kremer W; Kalbitzer HR; Jaenicke R
    Biochemistry; 2002 Oct; 41(39):11670-80. PubMed ID: 12269809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Including the Ensemble of Unstructured Conformations in the Analysis of Protein's Native State by High-Pressure NMR Spectroscopy.
    Berner F; Kovermann M
    Angew Chem Int Ed Engl; 2024 Jul; 63(27):e202401343. PubMed ID: 38656763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studying protein stability in crowded environments by NMR.
    Xu G; Cheng K; Liu M; Li C
    Prog Nucl Magn Reson Spectrosc; 2024; 140-141():42-48. PubMed ID: 38705635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Millisecond protein folding studied by NMR spectroscopy.
    Zeeb M; Balbach J
    Protein Pept Lett; 2005 Feb; 12(2):139-46. PubMed ID: 15723639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conservation of rapid two-state folding in mesophilic, thermophilic and hyperthermophilic cold shock proteins.
    Perl D; Welker C; Schindler T; Schröder K; Marahiel MA; Jaenicke R; Schmid FX
    Nat Struct Biol; 1998 Mar; 5(3):229-35. PubMed ID: 9501917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-stranded DNA binding of the cold-shock protein CspB from Bacillus subtilis: NMR mapping and mutational characterization.
    Zeeb M; Balbach J
    Protein Sci; 2003 Jan; 12(1):112-23. PubMed ID: 12493834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR spectroscopic characterization of millisecond protein folding by transverse relaxation dispersion measurements.
    Zeeb M; Balbach J
    J Am Chem Soc; 2005 Sep; 127(38):13207-12. PubMed ID: 16173748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR structure of protein yqbG from Bacillus subtilis reveals a novel alpha-helical protein fold.
    Liu G; Shen Y; Xiao R; Acton T; Ma LC; Joachimiak A; Montelione GT; Szyperski T
    Proteins; 2006 Jan; 62(1):288-91. PubMed ID: 16281282
    [No Abstract]   [Full Text] [Related]  

  • 16. The Bacillus subtilis cell division proteins FtsL and DivIC are intrinsically unstable and do not interact with one another in the absence of other septasomal components.
    Robson SA; Michie KA; Mackay JP; Harry E; King GF
    Mol Microbiol; 2002 May; 44(3):663-74. PubMed ID: 11994149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization of the cold shock protein CspB from Bacillus subtilis by evolutionary optimization of Coulombic interactions.
    Wunderlich M; Martin A; Schmid FX
    J Mol Biol; 2005 Apr; 347(5):1063-76. PubMed ID: 15784264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A suite of
    Overbeck JH; Kremer W; Sprangers R
    J Biomol NMR; 2020 Dec; 74(12):753-766. PubMed ID: 32997265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extremely rapid protein folding in the absence of intermediates.
    Schindler T; Herrler M; Marahiel MA; Schmid FX
    Nat Struct Biol; 1995 Aug; 2(8):663-73. PubMed ID: 7552728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR structure of Mistic, a membrane-integrating protein for membrane protein expression.
    Roosild TP; Greenwald J; Vega M; Castronovo S; Riek R; Choe S
    Science; 2005 Feb; 307(5713):1317-21. PubMed ID: 15731457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.