These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32786215)

  • 21. Single Quantum Dot Selection and Tailor-Made Photonic Device Integration using a Nanoscale-Focus Pinspot.
    Choi M; Lee M; Park SL; Kim BS; Jun S; Park SI; Song JD; Ko YH; Cho YH
    Adv Mater; 2023 Jun; 35(26):e2210667. PubMed ID: 36946467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inkjet-Printed Salt-Encapsulated Quantum Dot Film for UV-Based RGB Color-Converted Micro-Light Emitting Diode Displays.
    Ho SJ; Hsu HC; Yeh CW; Chen HS
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33346-33351. PubMed ID: 32496042
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Convenient generation of quantum dot-incorporated photonic crystal beads for multiplex bioassays.
    Cheng Y; Zhao Y; Shangguan F; Ye B; Li T; Gu Z
    J Biomed Nanotechnol; 2014 May; 10(5):760-6. PubMed ID: 24734528
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly crosslinked poly(dimethylsiloxane) microbeads with uniformly dispersed quantum dot nanocrystals.
    Shojaei-Zadeh S; Morris JF; Couzis A; Maldarelli C
    J Colloid Interface Sci; 2011 Nov; 363(1):25-33. PubMed ID: 21820125
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dielectrophoretic manipulation of finite sized species and the importance of the quadrupolar contribution.
    Liang E; Smith RL; Clague DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066617. PubMed ID: 15697536
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Manipulating and assembling metallic beads with Optoelectronic Tweezers.
    Zhang S; Juvert J; Cooper JM; Neale SL
    Sci Rep; 2016 Sep; 6():32840. PubMed ID: 27599445
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel dielectrophoresis potential spectroscopy for colloidal nanoparticles.
    Huang H; Ou-Yang HD
    Electrophoresis; 2017 Jun; 38(12):1609-1616. PubMed ID: 28370028
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Asymmetric Wettability Interfaces Induced a Large-Area Quantum Dot Microstructure toward High-Resolution Quantum Dot Light-Emitting Diodes.
    Li X; Hu B; Du Z; Wu Y; Jiang L
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28520-28526. PubMed ID: 31305056
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tunable Droplet Manipulation and Characterization by ac-DEP.
    Zhao K; Li D
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36572-36581. PubMed ID: 30264985
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dielectrophoresis in a slanted microchannel for separation of microparticles and bacteria.
    Nam SW; Kim SH; Park JK; Park S
    J Nanosci Nanotechnol; 2013 Dec; 13(12):7993-7. PubMed ID: 24266178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Patterned Hydrophobic Liquid Crystalline Fibers Fabricated from Defect Arrays of Reactive Mesogens via Electric Field Modulation.
    Kim K; Lee C; Yoon DK
    ACS Appl Mater Interfaces; 2023 Feb; 15(6):8387-8392. PubMed ID: 36740776
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Directing Charge Transfer in Quantum Dot Assemblies.
    Bloom BP; Liu R; Zhang P; Ghosh S; Naaman R; Beratan DN; Waldeck DH
    Acc Chem Res; 2018 Oct; 51(10):2565-2573. PubMed ID: 30289241
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sensitive Detection of Small Particles in Fluids Using Optical Fiber Tip with Dielectrophoresis.
    Tai YH; Chang DM; Pan MY; Huang DW; Wei PK
    Sensors (Basel); 2016 Feb; 16(3):303. PubMed ID: 26927128
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polarization behavior of polystyrene particles under direct current and low-frequency (<1 kHz) electric fields in dielectrophoretic systems.
    Saucedo-Espinosa MA; Rauch MM; LaLonde A; Lapizco-Encinas BH
    Electrophoresis; 2016 Feb; 37(4):635-44. PubMed ID: 26531799
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental and theoretical study of dielectrophoretic particle trapping in arrays of insulating structures: Effect of particle size and shape.
    Saucedo-Espinosa MA; Lapizco-Encinas BH
    Electrophoresis; 2015 May; 36(9-10):1086-97. PubMed ID: 25487065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Enhanced Fluorescence Signals of Quantum Dot-Polymer Composite Arrays Formed by Hybridization of Ultrathin Plasmonic Au Nanowalls.
    Cho SY; Jeon HJ; Yoo HW; Cho KM; Jung WB; Kim JS; Jung HT
    Nano Lett; 2015 Nov; 15(11):7273-80. PubMed ID: 26455592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Frequency sweep rate dependence on the dielectrophoretic response of polystyrene beads and red blood cells.
    Adams TN; Leonard KM; Minerick AR
    Biomicrofluidics; 2013; 7(6):64114. PubMed ID: 24396548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Size and medium conductivity dependence on dielectrophoretic behaviors of gas core poly-L-lysine shell nanoparticles.
    Yang C; Wu CJ; Ostafin AE; Thibaudeau G; Minerick AR
    Electrophoresis; 2015 Apr; 36(7-8):1002-10. PubMed ID: 25640705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantum dot photolithography using a quantum dot photoresist composed of an organic-inorganic hybrid coating layer.
    Myeong S; Chon B; Kumar S; Son HJ; Kang SO; Seo S
    Nanoscale Adv; 2022 Feb; 4(4):1080-1087. PubMed ID: 36131767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isomotive dielectrophoresis for parallel analysis of individual particles.
    Allen DJ; Accolla RP; Williams SJ
    Electrophoresis; 2017 Jun; 38(11):1441-1449. PubMed ID: 28112416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.