These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
29. Lowering Band Gap of an Electroactive Metal-Organic Framework via Complementary Guest Intercalation. Guo Z; Panda DK; Gordillo MA; Khatun A; Wu H; Zhou W; Saha S ACS Appl Mater Interfaces; 2017 Sep; 9(38):32413-32417. PubMed ID: 28872818 [TBL] [Abstract][Full Text] [Related]
30. Different nature of the interactions between anions and HAT(CN)6: from reversible anion-π complexes to irreversible electron-transfer processes (HAT(CN)6 = 1,4,5,8,9,12-hexaazatriphenylene). Aragay G; Frontera A; Lloveras V; Vidal-Gancedo J; Ballester P J Am Chem Soc; 2013 Feb; 135(7):2620-7. PubMed ID: 23339278 [TBL] [Abstract][Full Text] [Related]
31. Two-Dimensional Conductive π-d Frameworks with Multiple Sensory Capabilities. Li Z; Chang S; Zhang H; Hu Y; Huang Y; An L; Ren S ACS Appl Mater Interfaces; 2021 Jun; 13(24):28703-28709. PubMed ID: 34101425 [TBL] [Abstract][Full Text] [Related]
32. Maximizing the Potential of Electrically Conductive MOFs. Pham HTB; Choi JY; Stodolka M; Park J Acc Chem Res; 2024 Jan; ():. PubMed ID: 38294773 [TBL] [Abstract][Full Text] [Related]
33. Rational modifications of PCN-700 to induce electrical conductivity: a computational study. Chong S; Kim J Dalton Trans; 2020 Jan; 49(1):102-113. PubMed ID: 31793579 [TBL] [Abstract][Full Text] [Related]
34. Conductive Metal-Organic Frameworks with Extra Metallic Sites as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Huang H; Zhao Y; Bai Y; Li F; Zhang Y; Chen Y Adv Sci (Weinh); 2020 May; 7(9):2000012. PubMed ID: 32382489 [TBL] [Abstract][Full Text] [Related]
35. Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks. Park SS; Hontz ER; Sun L; Hendon CH; Walsh A; Van Voorhis T; Dincă M J Am Chem Soc; 2015 Feb; 137(5):1774-7. PubMed ID: 25597934 [TBL] [Abstract][Full Text] [Related]
36. Positive Cooperative Protonation of a Metal-Organic Framework: pH-Responsive Fluorescence and Proton Conduction. Yang SL; Li G; Guo MY; Liu WS; Bu R; Gao EQ J Am Chem Soc; 2021 Jun; 143(23):8838-8848. PubMed ID: 34076423 [TBL] [Abstract][Full Text] [Related]
37. Acid-Dependent Charge Transport in a Solution-Processed 2D Conductive Metal-Organic Framework. Park G; Demuth MC; Hendon CH; Park SS J Am Chem Soc; 2024 Apr; ():. PubMed ID: 38603596 [TBL] [Abstract][Full Text] [Related]
38. High Thermopower in a Zn-Based 3D Semiconductive Metal-Organic Framework. Park J; Hinckley AC; Huang Z; Chen G; Yakovenko AA; Zou X; Bao Z J Am Chem Soc; 2020 Dec; 142(49):20531-20535. PubMed ID: 33226798 [TBL] [Abstract][Full Text] [Related]
39. Anion-pi interactions as controlling elements in self-assembly reactions of Ag(I) complexes with pi-acidic aromatic rings. Schottel BL; Chifotides HT; Shatruk M; Chouai A; Pérez LM; Bacsa J; Dunbar KR J Am Chem Soc; 2006 May; 128(17):5895-912. PubMed ID: 16637658 [TBL] [Abstract][Full Text] [Related]
40. Enhancing One-Dimensional Charge Transport in Metal-organic Framework Hexagonal Nanorods for Electrocatalytic Oxygen Evolution. Lai Y; Xiao L; Tao Y; Gao Z; Zhang L; Su X; Dai Y ChemSusChem; 2021 Apr; 14(8):1830-1834. PubMed ID: 33656797 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]