BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 32786389)

  • 1. Fluorescent Copolymers for Bacterial Bioimaging and Viability Detection.
    Si Y; Grazon C; Clavier G; Rieger J; Tian Y; Audibert JF; Sclavi B; Méallet-Renault R
    ACS Sens; 2020 Sep; 5(9):2843-2851. PubMed ID: 32786389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacteria-derived fluorescent carbon dots for microbial live/dead differentiation.
    Hua XW; Bao YW; Wang HY; Chen Z; Wu FG
    Nanoscale; 2017 Feb; 9(6):2150-2161. PubMed ID: 27874123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-colour fluorescence fluorimetric analysis for direct quantification of bacteria and its application in monitoring bacterial growth in cellulose degradation systems.
    Duedu KO; French CE
    J Microbiol Methods; 2017 Apr; 135():85-92. PubMed ID: 28215962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A flow cytometry method for safe detection of bacterial viability.
    Servain-Viel S; Aknin ML; Domenichini S; Perlemuter G; Cassard AM; Schlecht-Louf G; Moal VL
    Cytometry A; 2024 Feb; 105(2):146-156. PubMed ID: 37786349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and biological imaging of cross-linked fluorescent polymeric nanoparticles with aggregation-induced emission characteristics based on the combination of RAFT polymerization and the Biginelli reaction.
    Dong J; Liu M; Jiang R; Huang H; Wan Q; Wen Y; Tian J; Dai Y; Zhang X; Wei Y
    J Colloid Interface Sci; 2018 Oct; 528():192-199. PubMed ID: 29857250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pipeline for developing and testing staining protocols for flow cytometry, demonstrated with SYBR Green I and propidium iodide viability staining.
    Nescerecka A; Hammes F; Juhna T
    J Microbiol Methods; 2016 Dec; 131():172-180. PubMed ID: 27810378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near real-time enumeration of live and dead bacteria using a fibre-based spectroscopic device.
    Ou F; McGoverin C; Swift S; Vanholsbeeck F
    Sci Rep; 2019 Mar; 9(1):4807. PubMed ID: 30886183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence-based in situ assay to probe the viability and growth kinetics of surface-adhering and suspended recombinant bacteria.
    Avalos Vizcarra I; Emge P; Miermeister P; Chabria M; Konradi R; Vogel V; Möller J
    Biointerphases; 2013 Dec; 8(1):22. PubMed ID: 24706134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and cost-effective evaluation of bacterial viability using fluorescence spectroscopy.
    Ou F; McGoverin C; Swift S; Vanholsbeeck F
    Anal Bioanal Chem; 2019 Jun; 411(16):3653-3663. PubMed ID: 31049617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of image-based flow cytometry in bacterial viability analysis using fluorescent probes.
    Pan Y; Kaatz L
    Curr Protoc Microbiol; 2012 Nov; Chapter 2():Unit 2C.5.. PubMed ID: 23184595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide.
    Stiefel P; Schmidt-Emrich S; Maniura-Weber K; Ren Q
    BMC Microbiol; 2015 Feb; 15():36. PubMed ID: 25881030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of Water-soluble Fluorescent Polymeric Micelles for Selective Detection of Hg
    Wang H; Chen J; Hong Y; Lv K; Yu M; Zhang P; Long Y; Yi P
    Anal Sci; 2017; 33(5):591-597. PubMed ID: 28496063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid method for detection of minimal bactericidal concentration of antibiotics.
    Bär W; Bäde-Schumann U; Krebs A; Cromme L
    J Microbiol Methods; 2009 Apr; 77(1):85-9. PubMed ID: 19318061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cationic Peptidopolysaccharide with an Intrinsic AIE Effect for Combating Bacteria and Multicolor Imaging.
    Dong Z; Wang Y; Wang C; Meng H; Li Y; Wang C
    Adv Healthc Mater; 2020 Jul; 9(13):e2000419. PubMed ID: 32431089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of highly fluorescent water-soluble polypyrrole for cell imaging and iodide ion sensing.
    Alizadeh N; Akbarinejad A; Hosseinkhani S; Rabbani F
    Anal Chim Acta; 2019 Nov; 1084():99-105. PubMed ID: 31519240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying spore viability of the honey bee pathogen Nosema apis using flow cytometry.
    Peng Y; Lee-Pullen TF; Heel K; Millar AH; Baer B
    Cytometry A; 2014 May; 85(5):454-62. PubMed ID: 24339267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of Candida shehatae viability by flow cytometry and fluorescent probes.
    Monthéard J; Garcier S; Lombard E; Cameleyre X; Guillouet S; Molina-Jouve C; Alfenore S
    J Microbiol Methods; 2012 Oct; 91(1):8-13. PubMed ID: 22796678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adherence and viability of intestinal bacteria to differentiated Caco-2 cells quantified by flow cytometry.
    Grootaert C; Boon N; Zeka F; Vanhoecke B; Bracke M; Verstraete W; Van de Wiele T
    J Microbiol Methods; 2011 Jul; 86(1):33-41. PubMed ID: 21443910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of staining with SYTO 9/propidium iodide: interplay, kinetics and impact on
    Deng Y; Wang L; Chen Y; Long Y
    Biotechniques; 2020 Aug; 69(2):88-98. PubMed ID: 32393121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiparametric flow cytometry allows rapid assessment and comparison of lactic acid bacteria viability after freezing and during frozen storage.
    Rault A; Béal C; Ghorbal S; Ogier JC; Bouix M
    Cryobiology; 2007 Aug; 55(1):35-43. PubMed ID: 17577587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.