These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 32786397)

  • 1. Understanding the Link between Lipid Diversity and the Biophysical Properties of the Neuronal Plasma Membrane.
    Wilson KA; MacDermott-Opeskin HI; Riley E; Lin Y; O'Mara ML
    Biochemistry; 2020 Aug; 59(33):3010-3018. PubMed ID: 32786397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional consequences of reversible lipid asymmetry in living membranes.
    Doktorova M; Symons JL; Levental I
    Nat Chem Biol; 2020 Dec; 16(12):1321-1330. PubMed ID: 33199908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Yeast Organelle Membranes and How Lipid Diversity Influences Bilayer Properties.
    Monje-Galvan V; Klauda JB
    Biochemistry; 2015 Nov; 54(45):6852-61. PubMed ID: 26497753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multivalent lipid targeting by the calcium-independent C2A domain of synaptotagmin-like protein 4/granuphilin.
    Alnaas AA; Watson-Siriboe A; Tran S; Negussie M; Henderson JA; Osterberg JR; Chon NL; Harrott BM; Oviedo J; Lyakhova T; Michel C; Reisdorph N; Reisdorph R; Shearn CT; Lin H; Knight JD
    J Biol Chem; 2021; 296():100159. PubMed ID: 33277360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes.
    Pankov R; Markovska T; Antonov P; Ivanova L; Momchilova A
    Gen Physiol Biophys; 2006 Sep; 25(3):313-24. PubMed ID: 17197729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations to plasma membrane lipid contents affect the biophysical properties of erythrocytes from individuals with hypertension.
    Martínez-Vieyra V; Rodríguez-Varela M; García-Rubio D; De la Mora-Mojica B; Méndez-Méndez J; Durán-Álvarez C; Cerecedo D
    Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):182996. PubMed ID: 31150634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulations of simple Bovine and Homo sapiens outer cortex ocular lens membrane models with a majority concentration of cholesterol.
    Adams M; Wang E; Zhuang X; Klauda JB
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):2134-2144. PubMed ID: 29169746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of phospholipid species on membrane fluidity: a meta-analysis for a novel phospholipid fluidity index.
    Fajardo VA; McMeekin L; LeBlanc PJ
    J Membr Biol; 2011 Nov; 244(2):97-103. PubMed ID: 22052236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane localization and dynamics of geranylgeranylated Rab5 hypervariable region.
    Edler E; Schulze E; Stein M
    Biochim Biophys Acta Biomembr; 2017 Aug; 1859(8):1335-1349. PubMed ID: 28455099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes?
    Róg T; Vattulainen I
    Chem Phys Lipids; 2014 Dec; 184():82-104. PubMed ID: 25444976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Receptor-independent interaction of bacterial lipopolysaccharide with lipid and lymphocyte membranes; the role of cholesterol.
    Ciesielski F; Davis B; Rittig M; Bonev BB; O'Shea P
    PLoS One; 2012; 7(6):e38677. PubMed ID: 22685597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of nonequilibrium membrane bud formation.
    Sens P
    Phys Rev Lett; 2004 Sep; 93(10):108103. PubMed ID: 15447455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid rafts as functional heterogeneity in cell membranes.
    Lingwood D; Kaiser HJ; Levental I; Simons K
    Biochem Soc Trans; 2009 Oct; 37(Pt 5):955-60. PubMed ID: 19754431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of lipid saturation on amyloid-beta peptide partitioning and aggregation in neuronal membranes: molecular dynamics simulations.
    Ntarakas N; Ermilova I; Lyubartsev AP
    Eur Biophys J; 2019 Dec; 48(8):813-824. PubMed ID: 31655893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A structurally relevant coarse-grained model for cholesterol.
    Hadley KR; McCabe C
    Biophys J; 2010 Nov; 99(9):2896-905. PubMed ID: 21044587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A; Draus J; Subczynski WK
    Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains.
    Pinto SN; Fernandes F; Fedorov A; Futerman AH; Silva LC; Prieto M
    Biochim Biophys Acta; 2013 Sep; 1828(9):2099-110. PubMed ID: 23702462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonadditive Compositional Curvature Energetics of Lipid Bilayers.
    Sodt AJ; Venable RM; Lyman E; Pastor RW
    Phys Rev Lett; 2016 Sep; 117(13):138104. PubMed ID: 27715135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of cholesterol Bilayer Domains Precedes Formation of Cholesterol Crystals in Membranes Made of the Major Phospholipids of Human Eye Lens Fiber Cell Plasma Membranes.
    Mainali L; Pasenkiewicz-Gierula M; Subczynski WK
    Curr Eye Res; 2020 Feb; 45(2):162-172. PubMed ID: 31462080
    [No Abstract]   [Full Text] [Related]  

  • 20. A Coarse Grained Model for a Lipid Membrane with Physiological Composition and Leaflet Asymmetry.
    Sharma S; Kim BN; Stansfeld PJ; Sansom MS; Lindau M
    PLoS One; 2015; 10(12):e0144814. PubMed ID: 26659855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.