These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The molecular mechanism of light-induced bond formation and breakage in the cyanobacteriochrome TePixJ. Ruf J; Bindschedler F; Buhrke D Phys Chem Chem Phys; 2023 Feb; 25(8):6016-6024. PubMed ID: 36752541 [TBL] [Abstract][Full Text] [Related]
3. The photoinitiated reaction pathway of full-length cyanobacteriochrome Tlr0924 monitored over 12 orders of magnitude. Hauck AF; Hardman SJ; Kutta RJ; Greetham GM; Heyes DJ; Scrutton NS J Biol Chem; 2014 Jun; 289(25):17747-57. PubMed ID: 24817121 [TBL] [Abstract][Full Text] [Related]
4. Pump-Probe Circular Dichroism Spectroscopy of Cyanobacteriochrome TePixJ Yields: Insights into Its Photoconversion. Clinger JA; Chen E; Kliger DS; Phillips GN J Phys Chem B; 2021 Jan; 125(1):202-210. PubMed ID: 33355472 [TBL] [Abstract][Full Text] [Related]
5. A second conserved GAF domain cysteine is required for the blue/green photoreversibility of cyanobacteriochrome Tlr0924 from Thermosynechococcus elongatus. Rockwell NC; Njuguna SL; Roberts L; Castillo E; Parson VL; Dwojak S; Lagarias JC; Spiller SC Biochemistry; 2008 Jul; 47(27):7304-16. PubMed ID: 18549244 [TBL] [Abstract][Full Text] [Related]
7. A photo-labile thioether linkage to phycoviolobilin provides the foundation for the blue/green photocycles in DXCF-cyanobacteriochromes. Burgie ES; Walker JM; Phillips GN; Vierstra RD Structure; 2013 Jan; 21(1):88-97. PubMed ID: 23219880 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive analysis of the green-to-blue photoconversion of full-length Cyanobacteriochrome Tlr0924. Hardman SJ; Hauck AF; Clark IP; Heyes DJ; Scrutton NS Biophys J; 2014 Nov; 107(9):2195-203. PubMed ID: 25418104 [TBL] [Abstract][Full Text] [Related]
9. Evolution-inspired design of multicolored photoswitches from a single cyanobacteriochrome scaffold. Fushimi K; Hasegawa M; Ito T; Rockwell NC; Enomoto G; -Win NN; Lagarias JC; Ikeuchi M; Narikawa R Proc Natl Acad Sci U S A; 2020 Jul; 117(27):15573-15580. PubMed ID: 32571944 [TBL] [Abstract][Full Text] [Related]
10. Nanosecond protein dynamics in a red/green cyanobacteriochrome revealed by transient IR spectroscopy. Buhrke D; Oppelt KT; Heckmeier PJ; Fernández-Terán R; Hamm P J Chem Phys; 2020 Dec; 153(24):245101. PubMed ID: 33380114 [TBL] [Abstract][Full Text] [Related]
11. Cyanobacteriochrome TePixJ of Thermosynechococcus elongatus harbors phycoviolobilin as a chromophore. Ishizuka T; Narikawa R; Kohchi T; Katayama M; Ikeuchi M Plant Cell Physiol; 2007 Sep; 48(9):1385-90. PubMed ID: 17715149 [TBL] [Abstract][Full Text] [Related]
12. Thiol-based photocycle of the blue and teal light-sensing cyanobacteriochrome Tlr1999. Enomoto G; Hirose Y; Narikawa R; Ikeuchi M Biochemistry; 2012 Apr; 51(14):3050-8. PubMed ID: 22439675 [TBL] [Abstract][Full Text] [Related]
13. Characterization of cyanobacteriochrome TePixJ from a thermophilic cyanobacterium Thermosynechococcus elongatus strain BP-1. Ishizuka T; Shimada T; Okajima K; Yoshihara S; Ochiai Y; Katayama M; Ikeuchi M Plant Cell Physiol; 2006 Sep; 47(9):1251-61. PubMed ID: 16887842 [TBL] [Abstract][Full Text] [Related]
14. Protochromic absorption changes in the two-cysteine photocycle of a blue/orange cyanobacteriochrome. Sato T; Kikukawa T; Miyoshi R; Kajimoto K; Yonekawa C; Fujisawa T; Unno M; Eki T; Hirose Y J Biol Chem; 2019 Dec; 294(49):18909-18922. PubMed ID: 31649035 [TBL] [Abstract][Full Text] [Related]
15. The cyanobacteriochrome, TePixJ, isomerizes its own chromophore by converting phycocyanobilin to phycoviolobilin. Ishizuka T; Kamiya A; Suzuki H; Narikawa R; Noguchi T; Kohchi T; Inomata K; Ikeuchi M Biochemistry; 2011 Feb; 50(6):953-61. PubMed ID: 21197959 [TBL] [Abstract][Full Text] [Related]
16. Characterization of Red/Green Cyanobacteriochrome NpR6012g4 by Solution Nuclear Magnetic Resonance Spectroscopy: A Hydrophobic Pocket for the C15-E,anti Chromophore in the Photoproduct. Rockwell NC; Martin SS; Lim S; Lagarias JC; Ames JB Biochemistry; 2015 Jun; 54(24):3772-83. PubMed ID: 25989712 [TBL] [Abstract][Full Text] [Related]
17. Primary and secondary photodynamics of the violet/orange dual-cysteine NpF2164g3 cyanobacteriochrome domain from Nostoc punctiforme. Gottlieb SM; Kim PW; Corley SC; Madsen D; Hanke SJ; Chang CW; Rockwell NC; Martin SS; Lagarias JC; Larsen DS Biochemistry; 2014 Feb; 53(6):1029-40. PubMed ID: 24437620 [TBL] [Abstract][Full Text] [Related]
18. Revealing the origin of multiphasic dynamic behaviors in cyanobacteriochrome. Wang D; Li X; Zhang S; Wang L; Yang X; Zhong D Proc Natl Acad Sci U S A; 2020 Aug; 117(33):19731-19736. PubMed ID: 32759207 [TBL] [Abstract][Full Text] [Related]
19. 1H, 13C, and 15N chemical shift assignments of cyanobacteriochrome NpR6012g4 in the green-absorbing photoproduct state. Lim S; Yu Q; Rockwell NC; Martin SS; Lagarias JC; Ames JB Biomol NMR Assign; 2016 Apr; 10(1):157-61. PubMed ID: 26537963 [TBL] [Abstract][Full Text] [Related]
20. Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily. Rockwell NC; Martin SS; Gulevich AG; Lagarias JC Biochemistry; 2012 Feb; 51(7):1449-63. PubMed ID: 22279972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]