These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32786426)

  • 21. Yne-Enones Enable Diversity-Oriented Catalytic Cascade Reactions: A Rapid Assembly of Complexity.
    Qian D; Zhang J
    Acc Chem Res; 2020 Oct; 53(10):2358-2371. PubMed ID: 32998506
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent advances in [2+2+2] cycloaddition reactions.
    Domínguez G; Pérez-Castells J
    Chem Soc Rev; 2011 Jul; 40(7):3430-44. PubMed ID: 21431173
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multicomponent Hetero-[4 + 2] Cycloaddition/Allylboration Reaction: From Natural Product Synthesis to Drug Discovery.
    Hall DG; Rybak T; Verdelet T
    Acc Chem Res; 2016 Nov; 49(11):2489-2500. PubMed ID: 27753496
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Silver-Catalyzed Activation of Terminal Alkynes for Synthesizing Nitrogen-Containing Molecules.
    Sivaguru P; Cao S; Babu KR; Bi X
    Acc Chem Res; 2020 Mar; 53(3):662-675. PubMed ID: 32078302
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photocatalytic Activation of Less Reactive Bonds and Their Functionalization via Hydrogen-Evolution Cross-Couplings.
    Chen B; Wu LZ; Tung CH
    Acc Chem Res; 2018 Oct; 51(10):2512-2523. PubMed ID: 30280898
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transition-metal-catalyzed C-N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C-H amination.
    Shin K; Kim H; Chang S
    Acc Chem Res; 2015 Apr; 48(4):1040-52. PubMed ID: 25821998
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic addition of C-H bonds across C-C unsaturated systems promoted by iridium(i) and its group IX congeners.
    Fernández DF; Mascareñas JL; López F
    Chem Soc Rev; 2020 Oct; 49(20):7378-7405. PubMed ID: 32926061
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the mechanism of N-heterocyclic carbene-catalyzed reactions involving acyl azoliums.
    Mahatthananchai J; Bode JW
    Acc Chem Res; 2014 Feb; 47(2):696-707. PubMed ID: 24410291
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cobalt catalysis involving π components in organic synthesis.
    Gandeepan P; Cheng CH
    Acc Chem Res; 2015 Apr; 48(4):1194-206. PubMed ID: 25854540
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism and Selectivity Control in Ni- and Pd-Catalyzed Cross-Couplings Involving Carbon-Oxygen Bond Activation.
    Zhang SQ; Hong X
    Acc Chem Res; 2021 May; 54(9):2158-2171. PubMed ID: 33826300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spectroscopic and theoretical investigations of vibrational frequencies in binary unsaturated transition-metal carbonyl cations, neutrals, and anions.
    Zhou M; Andrews L; Bauschlicher CW
    Chem Rev; 2001 Jul; 101(7):1931-61. PubMed ID: 11710236
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New Mechanistic Insights on the Selectivity of Transition-Metal-Catalyzed Organic Reactions: The Role of Computational Chemistry.
    Zhang X; Chung LW; Wu YD
    Acc Chem Res; 2016 Jun; 49(6):1302-10. PubMed ID: 27268125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reactivity of terminal imido complexes of group 4-6 metals: stoichiometric and catalytic reactions involving cycloaddition with unsaturated organic molecules.
    Kawakita K; Kakiuchi Y; Tsurugi H; Mashima K; Parker BF; Arnold J; Tonks IA
    Coord Chem Rev; 2020 Mar; 407():. PubMed ID: 32863399
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metal-Catalyzed Approaches toward the Oxindole Core.
    Marchese AD; Larin EM; Mirabi B; Lautens M
    Acc Chem Res; 2020 Aug; 53(8):1605-1619. PubMed ID: 32706589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Catalytic Control in Cyclizations: From Computational Mechanistic Understanding to Selectivity Prediction.
    Peng Q; Paton RS
    Acc Chem Res; 2016 May; 49(5):1042-51. PubMed ID: 27137131
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metal-Organic Cooperative Catalysis in C-H and C-C Bond Activation.
    Kim DS; Park WJ; Jun CH
    Chem Rev; 2017 Jul; 117(13):8977-9015. PubMed ID: 28060495
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transition-metal-catalyzed asymmetric allylic dearomatization reactions.
    Zhuo CX; Zheng C; You SL
    Acc Chem Res; 2014 Aug; 47(8):2558-73. PubMed ID: 24940612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of Selectivity in Palladium(II)-Catalyzed Oxidative Transformations of Allenes.
    Yang B; Qiu Y; Bäckvall JE
    Acc Chem Res; 2018 Jun; 51(6):1520-1531. PubMed ID: 29792667
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transition Metal-Catalyzed Tandem Reactions of Ynamides for Divergent N-Heterocycle Synthesis.
    Hong FL; Ye LW
    Acc Chem Res; 2020 Sep; 53(9):2003-2019. PubMed ID: 32869969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.