BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 32786511)

  • 21. Negative Image-Based Rescoring: Using Cavity Information to Improve Docking Screening.
    Pentikäinen OT; Postila PA
    Methods Mol Biol; 2021; 2266():141-154. PubMed ID: 33759125
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural-based virtual screening and in vitro assays for small molecules inhibiting the feline coronavirus 3CL protease as a surrogate platform for coronaviruses.
    Theerawatanasirikul S; Kuo CJ; Phecharat N; Chootip J; Lekcharoensuk C; Lekcharoensuk P
    Antiviral Res; 2020 Oct; 182():104927. PubMed ID: 32910955
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving small molecule virtual screening strategies for the next generation of therapeutics.
    Wingert BM; Camacho CJ
    Curr Opin Chem Biol; 2018 Jun; 44():87-92. PubMed ID: 29920436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Beware of machine learning-based scoring functions-on the danger of developing black boxes.
    Gabel J; Desaphy J; Rognan D
    J Chem Inf Model; 2014 Oct; 54(10):2807-15. PubMed ID: 25207678
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of a repurposed drug as an inhibitor of Spike protein of human coronavirus SARS-CoV-2 by computational methods.
    Unni S; Aouti S; Thiyagarajan S; Padmanabhan B
    J Biosci; 2020; 45(1):. PubMed ID: 33184246
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a simple, interpretable and easily transferable QSAR model for quick screening antiviral databases in search of novel 3C-like protease (3CLpro) enzyme inhibitors against SARS-CoV diseases.
    Kumar V; Roy K
    SAR QSAR Environ Res; 2020 Jul; 31(7):511-526. PubMed ID: 32543892
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Discovery of potent inhibitors for SARS-CoV-2's main protease by ligand-based/structure-based virtual screening, MD simulations, and binding energy calculations.
    Abu-Saleh AAA; Awad IE; Yadav A; Poirier RA
    Phys Chem Chem Phys; 2020 Oct; 22(40):23099-23106. PubMed ID: 33025993
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach.
    Aftab SO; Ghouri MZ; Masood MU; Haider Z; Khan Z; Ahmad A; Munawar N
    J Transl Med; 2020 Jul; 18(1):275. PubMed ID: 32635935
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Commercial SARS-CoV-2 Targeted, Protease Inhibitor Focused and Protein-Protein Interaction Inhibitor Focused Molecular Libraries for Virtual Screening and Drug Design.
    Kralj S; Jukič M; Bren U
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008818
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ligand and Structure-based Virtual Screening of Lamiaceae Diterpenes with Potential Activity against a Novel Coronavirus (2019-nCoV).
    Rodrigues GCS; Dos Santos Maia M; de Menezes RPB; Cavalcanti ABS; de Sousa NF; de Moura ÉP; Monteiro AFM; Scotti L; Scotti MT
    Curr Top Med Chem; 2020; 20(24):2126-2145. PubMed ID: 32674732
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of the CXCR4 structure on docking-based virtual screening of HIV entry inhibitors.
    Planesas JM; Pérez-Nueno VI; Borrell JI; Teixidó J
    J Mol Graph Model; 2012 Sep; 38():123-36. PubMed ID: 23079643
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction of Drug Candidates with Various SARS-CoV-2 Receptors: An in Silico Study to Combat COVID-19.
    Barros RO; Junior FLCC; Pereira WS; Oliveira NMN; Ramos RM
    J Proteome Res; 2020 Nov; 19(11):4567-4575. PubMed ID: 32786890
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular Basis of SARS-CoV-2 Infection and Rational Design of Potential Antiviral Agents: Modeling and Simulation Approaches.
    Francés-Monerris A; Hognon C; Miclot T; García-Iriepa C; Iriepa I; Terenzi A; Grandemange S; Barone G; Marazzi M; Monari A
    J Proteome Res; 2020 Nov; 19(11):4291-4315. PubMed ID: 33119313
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a Fluorescence-Based, High-Throughput SARS-CoV-2 3CL
    Froggatt HM; Heaton BE; Heaton NS
    J Virol; 2020 Oct; 94(22):. PubMed ID: 32843534
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting SARS-CoV-2 using polycomb inhibitors as antiviral agents.
    Ayaz S; Crea F
    Epigenomics; 2020 May; 12(10):811-812. PubMed ID: 32495654
    [No Abstract]   [Full Text] [Related]  

  • 38. Novel insights of structure-based modeling for RNA-targeted drug discovery.
    Chen L; Calin GA; Zhang S
    J Chem Inf Model; 2012 Oct; 52(10):2741-53. PubMed ID: 22947071
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ligand-based virtual screening approach using a new scoring function.
    Hamza A; Wei NN; Zhan CG
    J Chem Inf Model; 2012 Apr; 52(4):963-74. PubMed ID: 22486340
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Incorporating Explicit Water Molecules and Ligand Conformation Stability in Machine-Learning Scoring Functions.
    Lu J; Hou X; Wang C; Zhang Y
    J Chem Inf Model; 2019 Nov; 59(11):4540-4549. PubMed ID: 31638801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.