BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 32786511)

  • 41. Can an Old Ally Defeat a New Enemy?
    Gurbel PA; Bliden KP; Schrör K
    Circulation; 2020 Jul; 142(4):315-317. PubMed ID: 32478567
    [No Abstract]   [Full Text] [Related]  

  • 42. In silico identification of potential inhibitors of key SARS-CoV-2 3CL hydrolase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation.
    Choudhary MI; Shaikh M; Tul-Wahab A; Ur-Rahman A
    PLoS One; 2020; 15(7):e0235030. PubMed ID: 32706783
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking.
    Joshi T; Joshi T; Sharma P; Mathpal S; Pundir H; Bhatt V; Chandra S
    Eur Rev Med Pharmacol Sci; 2020 Apr; 24(8):4529-4536. PubMed ID: 32373991
    [TBL] [Abstract][Full Text] [Related]  

  • 44. COSMO-RS-Based Descriptors for the Machine Learning-Enabled Screening of Nucleotide Analogue Drugs against SARS-CoV-2.
    Gusarov S; Stoyanov SR
    J Phys Chem Lett; 2020 Nov; 11(21):9408-9414. PubMed ID: 33104327
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Negative Image-Based Screening: Rigid Docking Using Cavity Information.
    Postila PA; Kurkinen ST; Pentikäinen OT
    Methods Mol Biol; 2021; 2266():125-140. PubMed ID: 33759124
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improving virtual screening results with MM/GBSA and MM/PBSA rescoring.
    Sahakyan H
    J Comput Aided Mol Des; 2021 Jun; 35(6):731-736. PubMed ID: 33983518
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fragment Library of Natural Products and Compound Databases for Drug Discovery.
    Chávez-Hernández AL; Sánchez-Cruz N; Medina-Franco JL
    Biomolecules; 2020 Nov; 10(11):. PubMed ID: 33172012
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Targeting protein-protein interactions and fragment-based drug discovery.
    Valkov E; Sharpe T; Marsh M; Greive S; Hyvönen M
    Top Curr Chem; 2012; 317():145-79. PubMed ID: 22006238
    [TBL] [Abstract][Full Text] [Related]  

  • 49. SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation.
    McGibbon M; Money-Kyrle S; Blay V; Houston DR
    J Adv Res; 2023 Apr; 46():135-147. PubMed ID: 35901959
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ligand-Enhanced Negative Images Optimized for Docking Rescoring.
    Kurkinen ST; Lehtonen JV; Pentikäinen OT; Postila PA
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887220
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enrichment of chemical libraries docked to protein conformational ensembles and application to aldehyde dehydrogenase 2.
    Wang B; Buchman CD; Li L; Hurley TD; Meroueh SO
    J Chem Inf Model; 2014 Jul; 54(7):2105-16. PubMed ID: 24856086
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Target-Specific Machine Learning Scoring Function Improved Structure-Based Virtual Screening Performance for SARS-CoV-2 Drugs Development.
    Tahir Ul Qamar M; Zhu XT; Chen LL; Alhussain L; Alshiekheid MA; Theyab A; Algahtani M
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232307
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Virtual fragment screening: exploration of MM-PBSA re-scoring.
    Kawatkar S; Moustakas D; Miller M; Joseph-McCarthy D
    J Comput Aided Mol Des; 2012 Aug; 26(8):921-34. PubMed ID: 22869295
    [TBL] [Abstract][Full Text] [Related]  

  • 54. SMMPPI: a machine learning-based approach for prediction of modulators of protein-protein interactions and its application for identification of novel inhibitors for RBD:hACE2 interactions in SARS-CoV-2.
    Gupta P; Mohanty D
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33839740
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Energetic analysis of fragment docking and application to structure-based pharmacophore hypothesis generation.
    Loving K; Salam NK; Sherman W
    J Comput Aided Mol Des; 2009 Aug; 23(8):541-54. PubMed ID: 19421721
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Comparison between Enrichment Optimization Algorithm (EOA)-Based and Docking-Based Virtual Screening.
    Spiegel J; Senderowitz H
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008467
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Machine learning on ligand-residue interaction profiles to significantly improve binding affinity prediction.
    Ji B; He X; Zhai J; Zhang Y; Man VH; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33758923
    [TBL] [Abstract][Full Text] [Related]  

  • 58. AMMOS: Automated Molecular Mechanics Optimization tool for in silico Screening.
    Pencheva T; Lagorce D; Pajeva I; Villoutreix BO; Miteva MA
    BMC Bioinformatics; 2008 Oct; 9():438. PubMed ID: 18925937
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DockingApp RF: A State-of-the-Art Novel Scoring Function for Molecular Docking in a User-Friendly Interface to AutoDock Vina.
    Macari G; Toti D; Pasquadibisceglie A; Polticelli F
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33333976
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Towards an Enrichment Optimization Algorithm (EOA)-based Target Specific Docking Functions for Virtual Screening.
    Spiegel J; Senderowitz H
    Mol Inform; 2022 Nov; 41(11):e2200034. PubMed ID: 35790469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.