BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 32786511)

  • 61. ALADDIN: Docking Approach Augmented by Machine Learning for Protein Structure Selection Yields Superior Virtual Screening Performance.
    Fan N; Bauer CA; Stork C; de Bruyn Kops C; Kirchmair J
    Mol Inform; 2020 Apr; 39(4):e1900103. PubMed ID: 31663691
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fine tuning for success in structure-based virtual screening.
    Pihan E; Kotev M; Rabal O; Beato C; Diaz Gonzalez C
    J Comput Aided Mol Des; 2021 Dec; 35(12):1195-1206. PubMed ID: 34799816
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Protein-Ligand Docking in the Machine-Learning Era.
    Yang C; Chen EA; Zhang Y
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889440
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Small-molecule inhibitors of protein-protein interactions: progressing toward the reality.
    Arkin MR; Tang Y; Wells JA
    Chem Biol; 2014 Sep; 21(9):1102-14. PubMed ID: 25237857
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Beware of the generic machine learning-based scoring functions in structure-based virtual screening.
    Shen C; Hu Y; Wang Z; Zhang X; Pang J; Wang G; Zhong H; Xu L; Cao D; Hou T
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32484221
    [TBL] [Abstract][Full Text] [Related]  

  • 66. HADDOCK(2P2I): a biophysical model for predicting the binding affinity of protein-protein interaction inhibitors.
    Kastritis PL; Rodrigues JP; Bonvin AM
    J Chem Inf Model; 2014 Mar; 54(3):826-36. PubMed ID: 24521147
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Logistic Regression Method for Ligand Discovery.
    Chen C; Wang H
    J Comput Biol; 2020 Jun; 27(6):934-940. PubMed ID: 31545095
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Small-molecule inhibitor starting points learned from protein-protein interaction inhibitor structure.
    Koes DR; Camacho CJ
    Bioinformatics; 2012 Mar; 28(6):784-91. PubMed ID: 22210869
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Target-specific support vector machine scoring in structure-based virtual screening: computational validation, in vitro testing in kinases, and effects on lung cancer cell proliferation.
    Li L; Khanna M; Jo I; Wang F; Ashpole NM; Hudmon A; Meroueh SO
    J Chem Inf Model; 2011 Apr; 51(4):755-9. PubMed ID: 21438548
    [TBL] [Abstract][Full Text] [Related]  

  • 70. LIGSIFT: an open-source tool for ligand structural alignment and virtual screening.
    Roy A; Skolnick J
    Bioinformatics; 2015 Feb; 31(4):539-44. PubMed ID: 25336501
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Implementation and evaluation of a docking-rescoring method using molecular footprint comparisons.
    Balius TE; Mukherjee S; Rizzo RC
    J Comput Chem; 2011 Jul; 32(10):2273-89. PubMed ID: 21541962
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Predictive Power of Different Types of Experimental Restraints in Small Molecule Docking: A Review.
    Fu DY; Meiler J
    J Chem Inf Model; 2018 Feb; 58(2):225-233. PubMed ID: 29286651
    [TBL] [Abstract][Full Text] [Related]  

  • 73. LIT-PCBA: An Unbiased Data Set for Machine Learning and Virtual Screening.
    Tran-Nguyen VK; Jacquemard C; Rognan D
    J Chem Inf Model; 2020 Sep; 60(9):4263-4273. PubMed ID: 32282202
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Motif mediated protein-protein interactions as drug targets.
    Corbi-Verge C; Kim PM
    Cell Commun Signal; 2016 Mar; 14():8. PubMed ID: 26936767
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Use of molecular docking computational tools in drug discovery.
    Stanzione F; Giangreco I; Cole JC
    Prog Med Chem; 2021; 60():273-343. PubMed ID: 34147204
    [TBL] [Abstract][Full Text] [Related]  

  • 76. True Accuracy of Fast Scoring Functions to Predict High-Throughput Screening Data from Docking Poses: The Simpler the Better.
    Tran-Nguyen VK; Bret G; Rognan D
    J Chem Inf Model; 2021 Jun; 61(6):2788-2797. PubMed ID: 34109796
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The SGC beyond structural genomics: redefining the role of 3D structures by coupling genomic stratification with fragment-based discovery.
    Bradley AR; Echalier A; Fairhead M; Strain-Damerell C; Brennan P; Bullock AN; Burgess-Brown NA; Carpenter EP; Gileadi O; Marsden BD; Lee WH; Yue W; Bountra C; von Delft F
    Essays Biochem; 2017 Nov; 61(5):495-503. PubMed ID: 29118096
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Checking the STEP-Associated Trafficking and Internalization of Glutamate Receptors for Reduced Cognitive Deficits: A Machine Learning Approach-Based Cheminformatics Study and Its Application for Drug Repurposing.
    Jamal S; Goyal S; Shanker A; Grover A
    PLoS One; 2015; 10(6):e0129370. PubMed ID: 26066505
    [TBL] [Abstract][Full Text] [Related]  

  • 79. An evaluation of combined strategies for improving the performance of molecular docking.
    Xu S; Wang L; Pan X
    J Bioinform Comput Biol; 2021 Apr; 19(2):2150003. PubMed ID: 33641636
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Assessment of fragment docking and scoring with the endothiapepsin model system.
    Herbst C; Endres S; Würz R; Sotriffer C
    Arch Pharm (Weinheim); 2024 Jun; 357(6):e2400061. PubMed ID: 38631672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.