These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 32786511)

  • 81. Improving Docking-Based Virtual Screening Ability by Integrating Multiple Energy Auxiliary Terms from Molecular Docking Scoring.
    Ye WL; Shen C; Xiong GL; Ding JJ; Lu AP; Hou TJ; Cao DS
    J Chem Inf Model; 2020 Sep; 60(9):4216-4230. PubMed ID: 32352294
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Application of MM-PBSA Methods in Virtual Screening.
    Poli G; Granchi C; Rizzolio F; Tuccinardi T
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32340232
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Fr-PPIChem: An Academic Compound Library Dedicated to Protein-Protein Interactions.
    Bosc N; Muller C; Hoffer L; Lagorce D; Bourg S; Derviaux C; Gourdel ME; Rain JC; Miller TW; Villoutreix BO; Miteva MA; Bonnet P; Morelli X; Sperandio O; Roche P
    ACS Chem Biol; 2020 Jun; 15(6):1566-1574. PubMed ID: 32320205
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Merging Ligand-Based and Structure-Based Methods in Drug Discovery: An Overview of Combined Virtual Screening Approaches.
    Vázquez J; López M; Gibert E; Herrero E; Luque FJ
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33076254
    [TBL] [Abstract][Full Text] [Related]  

  • 85. FRAGSITE2: A structure and fragment-based approach for virtual ligand screening.
    Zhou H; Skolnick J
    Protein Sci; 2024 Jan; 33(1):e4869. PubMed ID: 38100293
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A leap into the chemical space of protein-protein interaction inhibitors.
    Villoutreix BO; Labbé CM; Lagorce D; Laconde G; Sperandio O
    Curr Pharm Des; 2012; 18(30):4648-67. PubMed ID: 22650260
    [TBL] [Abstract][Full Text] [Related]  

  • 87. BCL::Mol2D-a robust atom environment descriptor for QSAR modeling and lead optimization.
    Vu O; Mendenhall J; Altarawy D; Meiler J
    J Comput Aided Mol Des; 2019 May; 33(5):477-486. PubMed ID: 30955193
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Correlation of protein binding pocket properties with hits' chemistries used in generation of ultra-large virtual libraries.
    Song RX; Nicklaus MC; Tarasova NI
    J Comput Aided Mol Des; 2024 May; 38(1):22. PubMed ID: 38753096
    [TBL] [Abstract][Full Text] [Related]  

  • 89. The impact of compound library size on the performance of scoring functions for structure-based virtual screening.
    Fresnais L; Ballester PJ
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32568385
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Virtual Screening Strategy to Identify Retinoic Acid-Related Orphan Receptor γt Modulators.
    Jokinen EM; Niemeläinen M; Kurkinen ST; Lehtonen JV; Lätti S; Postila PA; Pentikäinen OT; Niinivehmas SP
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110655
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Delta Machine Learning to Improve Scoring-Ranking-Screening Performances of Protein-Ligand Scoring Functions.
    Yang C; Zhang Y
    J Chem Inf Model; 2022 Jun; 62(11):2696-2712. PubMed ID: 35579568
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Chemical Space Overlap with Critical Protein-Protein Interface Residues in Commercial and Specialized Small-Molecule Libraries.
    Si Y; Xu D; Bum-Erdene K; Ghozayel MK; Yang B; Clemons PA; Meroueh SO
    ChemMedChem; 2019 Jan; 14(1):119-131. PubMed ID: 30548204
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Side chain virtual screening of matched molecular pairs: a PDB-wide and ChEMBL-wide analysis.
    Baumgartner MP; Evans DA
    J Comput Aided Mol Des; 2020 Sep; 34(9):953-963. PubMed ID: 32533370
    [TBL] [Abstract][Full Text] [Related]  

  • 94. A Small Step Toward Generalizability: Training a Machine Learning Scoring Function for Structure-Based Virtual Screening.
    Scantlebury J; Vost L; Carbery A; Hadfield TE; Turnbull OM; Brown N; Chenthamarakshan V; Das P; Grosjean H; von Delft F; Deane CM
    J Chem Inf Model; 2023 May; 63(10):2960-2974. PubMed ID: 37166179
    [TBL] [Abstract][Full Text] [Related]  

  • 95. New machine learning and physics-based scoring functions for drug discovery.
    Guedes IA; Barreto AMS; Marinho D; Krempser E; Kuenemann MA; Sperandio O; Dardenne LE; Miteva MA
    Sci Rep; 2021 Feb; 11(1):3198. PubMed ID: 33542326
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Virtual Screening of Small Molecules Targeting BCL2 with Machine Learning, Molecular Docking, and MD Simulation.
    Tondar A; Sánchez-Herrero S; Bepari AK; Bahmani A; Calvet Liñán L; Hervás-Marín D
    Biomolecules; 2024 May; 14(5):. PubMed ID: 38785951
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Exploring the chemical space of protein-protein interaction inhibitors through machine learning.
    Choi J; Yun JS; Song H; Kim NH; Kim HS; Yook JI
    Sci Rep; 2021 Jun; 11(1):13369. PubMed ID: 34183730
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Boosting Protein-Ligand Binding Pose Prediction and Virtual Screening Based on Residue-Atom Distance Likelihood Potential and Graph Transformer.
    Shen C; Zhang X; Deng Y; Gao J; Wang D; Xu L; Pan P; Hou T; Kang Y
    J Med Chem; 2022 Aug; 65(15):10691-10706. PubMed ID: 35917397
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Uni-Dock: GPU-Accelerated Docking Enables Ultralarge Virtual Screening.
    Yu Y; Cai C; Wang J; Bo Z; Zhu Z; Zheng H
    J Chem Theory Comput; 2023 Jun; 19(11):3336-3345. PubMed ID: 37125970
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Can molecular dynamics simulations improve predictions of protein-ligand binding affinity with machine learning?
    Gu S; Shen C; Yu J; Zhao H; Liu H; Liu L; Sheng R; Xu L; Wang Z; Hou T; Kang Y
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36681903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.