These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 32786537)

  • 41. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria.
    Chung PY; Khanum R
    J Microbiol Immunol Infect; 2017 Aug; 50(4):405-410. PubMed ID: 28690026
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthetic membrane-targeted antibiotics.
    Vooturi SK; Firestine SM
    Curr Med Chem; 2010; 17(21):2292-300. PubMed ID: 20459377
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Caprine Bactenecins as Promising Tools for Developing New Antimicrobial and Antitumor Drugs.
    Kopeikin PM; Zharkova MS; Kolobov AA; Smirnova MP; Sukhareva MS; Umnyakova ES; Kokryakov VN; Orlov DS; Milman BL; Balandin SV; Panteleev PV; Ovchinnikova TV; Komlev AS; Tossi A; Shamova OV
    Front Cell Infect Microbiol; 2020; 10():552905. PubMed ID: 33194795
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Short AntiMicrobial Peptides (SAMPs) as a class of extraordinary promising therapeutic agents.
    Ramesh S; Govender T; Kruger HG; de la Torre BG; Albericio F
    J Pept Sci; 2016 Jul; 22(7):438-51. PubMed ID: 27352996
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluation of topologically distinct constrained antimicrobial peptides with broad-spectrum antimicrobial activity.
    Yuan F; Tian Y; Qin W; Li J; Yang D; Zhao B; Yin F; Li Z
    Org Biomol Chem; 2018 Aug; 16(32):5764-5770. PubMed ID: 30004546
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Toward Infection-Resistant Surfaces: Achieving High Antimicrobial Peptide Potency by Modulating the Functionality of Polymer Brush and Peptide.
    Yu K; Lo JC; Mei Y; Haney EF; Siren E; Kalathottukaren MT; Hancock RE; Lange D; Kizhakkedathu JN
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28591-605. PubMed ID: 26641308
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Temporins: An Approach of Potential Pharmaceutic Candidates.
    Romero SM; Cardillo AB; Martínez Ceron MC; Camperi SA; Giudicessi SL
    Surg Infect (Larchmt); 2020 May; 21(4):309-322. PubMed ID: 31804896
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spectroscopic study of antimicrobial peptides: Structure and functional activity.
    Skvortsova P; Valiullina Y; Baranova N; Faizullin D; Zuev Y; Ermakova E
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 264():120273. PubMed ID: 34425316
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Antimicrobial Peptides and their Pore/Ion Channel Properties in Neutralization of Pathogenic Microbes.
    Sharma S; Sahoo N; Bhunia A
    Curr Top Med Chem; 2016; 16(1):46-53. PubMed ID: 26139119
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Towards the Development of Synthetic Antibiotics: Designs Inspired by Natural Antimicrobial Peptides.
    Azmi F; Skwarczynski M; Toth I
    Curr Med Chem; 2016; 23(41):4610-4624. PubMed ID: 27570165
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recent insights into structure-function relationships of antimicrobial peptides.
    Ahmed TAE; Hammami R
    J Food Biochem; 2019 Jan; 43(1):e12546. PubMed ID: 31353490
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Long hydrophilic-and-cationic polymers: a different pathway toward preferential activity against bacterial over mammalian membranes.
    Yang X; Hu K; Hu G; Shi D; Jiang Y; Hui L; Zhu R; Xie Y; Yang L
    Biomacromolecules; 2014 Sep; 15(9):3267-77. PubMed ID: 25068991
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthetic Biology and Computer-Based Frameworks for Antimicrobial Peptide Discovery.
    Torres MDT; Cao J; Franco OL; Lu TK; de la Fuente-Nunez C
    ACS Nano; 2021 Feb; 15(2):2143-2164. PubMed ID: 33538585
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Protein-Based Films Functionalized with a Truncated Antimicrobial Peptide Sequence Display Broad Antimicrobial Activity.
    da Costa A; Pereira AM; Sampaio P; Rodríguez-Cabello JC; Gomes AC; Casal M; Machado R
    ACS Biomater Sci Eng; 2021 Feb; 7(2):451-461. PubMed ID: 33492122
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improving the Activity of Trp-Rich Antimicrobial Peptides by Arg/Lys Substitutions and Changing the Length of Cationic Residues.
    Arias M; Piga KB; Hyndman ME; Vogel HJ
    Biomolecules; 2018 Apr; 8(2):. PubMed ID: 29671805
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Small cationic antimicrobial peptidomimetics: emerging candidate for the development of potential anti-infective agents.
    Lohan S; Bisht GS
    Curr Pharm Des; 2013; 19(32):5809-23. PubMed ID: 23656460
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Recent progress of antimicrobial peptides in sepsis treatment].
    Fan Z; Li Y; Tang M; Fang Z; Zhang X
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2021 May; 33(5):626-629. PubMed ID: 34112307
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Antimicrobial Peptides.
    Fry DE
    Surg Infect (Larchmt); 2018; 19(8):804-811. PubMed ID: 30265592
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Large-Scale Analysis of Antimicrobial Activities in Relation to Amphipathicity and Charge Reveals Novel Characterization of Antimicrobial Peptides.
    Wang CK; Shih LY; Chang KY
    Molecules; 2017 Nov; 22(11):. PubMed ID: 29165350
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Treatment of microbial biofilms in the post-antibiotic era: prophylactic and therapeutic use of antimicrobial peptides and their design by bioinformatics tools.
    Di Luca M; Maccari G; Nifosì R
    Pathog Dis; 2014 Apr; 70(3):257-70. PubMed ID: 24515391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.