These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 32786556)
1. Interfacial and Activation Energies of Environmentally Abundant Heterogeneously Nucleated Iron(III) (Hydr)oxide on Quartz. Wu X; Lee B; Jun YS Environ Sci Technol; 2020 Oct; 54(19):12119-12129. PubMed ID: 32786556 [TBL] [Abstract][Full Text] [Related]
2. Heterogeneous Nucleation and Growth of Nanoparticles at Environmental Interfaces. Jun YS; Kim D; Neil CW Acc Chem Res; 2016 Sep; 49(9):1681-90. PubMed ID: 27513685 [TBL] [Abstract][Full Text] [Related]
3. Different arsenate and phosphate incorporation effects on the nucleation and growth of iron(III) (Hydr)oxides on quartz. Neil CW; Lee B; Jun YS Environ Sci Technol; 2014 Oct; 48(20):11883-91. PubMed ID: 25232994 [TBL] [Abstract][Full Text] [Related]
4. Control of heterogeneous Fe(III) (hydr)oxide nucleation and growth by interfacial energies and local saturations. Hu Y; Neil C; Lee B; Jun YS Environ Sci Technol; 2013 Aug; 47(16):9198-206. PubMed ID: 23875694 [TBL] [Abstract][Full Text] [Related]
5. Structural Match of Heterogeneously Nucleated Mn(OH) Jung H; Lee B; Jun YS Langmuir; 2016 Oct; 32(41):10735-10743. PubMed ID: 27627062 [TBL] [Abstract][Full Text] [Related]
6. Formation of iron(III) (hydr)oxides on polyaspartate- and alginate-coated substrates: effects of coating hydrophilicity and functional group. Ray JR; Lee B; Baltrusaitis J; Jun YS Environ Sci Technol; 2012 Dec; 46(24):13167-75. PubMed ID: 23153372 [TBL] [Abstract][Full Text] [Related]
7. Interfacial energies for heterogeneous nucleation of calcium carbonate on mica and quartz. Li Q; Fernandez-Martinez A; Lee B; Waychunas GA; Jun YS Environ Sci Technol; 2014 May; 48(10):5745-53. PubMed ID: 24730716 [TBL] [Abstract][Full Text] [Related]
8. In situ determination of interfacial energies between heterogeneously nucleated CaCO3 and quartz substrates: thermodynamics of CO2 mineral trapping. Fernandez-Martinez A; Hu Y; Lee B; Jun YS; Waychunas GA Environ Sci Technol; 2013 Jan; 47(1):102-9. PubMed ID: 22646799 [TBL] [Abstract][Full Text] [Related]
9. Aluminum affects heterogeneous Fe(III) (Hydr)oxide nucleation, growth, and ostwald ripening. Hu Y; Li Q; Lee B; Jun YS Environ Sci Technol; 2014; 48(1):299-306. PubMed ID: 24289329 [TBL] [Abstract][Full Text] [Related]
10. Ionic Strength-Controlled Mn (Hydr)oxide Nanoparticle Nucleation on Quartz: Effect of Aqueous Mn(OH)2. Jung H; Jun YS Environ Sci Technol; 2016 Jan; 50(1):105-13. PubMed ID: 26588858 [TBL] [Abstract][Full Text] [Related]
11. Environmentally abundant anions influence the nucleation, growth, Ostwald ripening, and aggregation of hydrous Fe(III) oxides. Hu Y; Lee B; Bell C; Jun YS Langmuir; 2012 May; 28(20):7737-46. PubMed ID: 22568400 [TBL] [Abstract][Full Text] [Related]
12. Surface Functional Groups Affect Iron (Hydr)oxide Heterogeneous Nucleation: Implications for Membrane Scaling. Chou PI; Ghim D; Gupta P; Singamaneni S; Lee B; Jun YS Environ Sci Technol; 2023 Aug; 57(30):11056-11066. PubMed ID: 37467155 [TBL] [Abstract][Full Text] [Related]
13. Effect of oxide formation mechanisms on lead adsorption by biogenic manganese (hydr)oxides, iron (hydr)oxides, and their mixtures. Nelson YM; Lion LW; Shuler ML; Ghiorse WC Environ Sci Technol; 2002 Feb; 36(3):421-5. PubMed ID: 11871557 [TBL] [Abstract][Full Text] [Related]
14. Amorphous iron-(hydr) oxide networks at liquid/vapor interfaces: in situ X-ray scattering and spectroscopy studies. Wang W; Pleasants J; Bu W; Park RY; Kuzmenko I; Vaknin D J Colloid Interface Sci; 2012 Oct; 384(1):45-54. PubMed ID: 22818795 [TBL] [Abstract][Full Text] [Related]
15. Fe(III) hydroxide nucleation and growth on quartz in the presence of Cu(II), Pb(II), and Cr(III): metal hydrolysis and adsorption. Dai C; Hu Y Environ Sci Technol; 2015 Jan; 49(1):292-300. PubMed ID: 25496643 [TBL] [Abstract][Full Text] [Related]
16. Humic acids restrict the transformation and the stabilization of Cd by iron (hydr)oxides. Qu C; Chen J; Mortimer M; Wu Y; Cai P; Huang Q J Hazard Mater; 2022 May; 430():128365. PubMed ID: 35150996 [TBL] [Abstract][Full Text] [Related]
17. Interpreting competitive adsorption of arsenate and phosphate on nanosized iron (hydr)oxides: effects of pH and surface loading. Han J; Ro HM Environ Sci Pollut Res Int; 2018 Oct; 25(28):28572-28582. PubMed ID: 30091077 [TBL] [Abstract][Full Text] [Related]
18. In situ observations of nanoparticle early development kinetics at mineral-water interfaces. Jun YS; Lee B; Waychunas GA Environ Sci Technol; 2010 Nov; 44(21):8182-9. PubMed ID: 20932004 [TBL] [Abstract][Full Text] [Related]
19. Enhanced Hydrolysis of Li T; Zhong W; Jing C; Li X; Zhang T; Jiang C; Chen W Environ Sci Technol; 2020 Jul; 54(14):8658-8667. PubMed ID: 32545958 [TBL] [Abstract][Full Text] [Related]
20. Sulfidation of ferric (hydr)oxides and its implication on contaminants transformation: a review. Zhang S; Peiffer S; Liao X; Yang Z; Ma X; He D Sci Total Environ; 2022 Apr; 816():151574. PubMed ID: 34798096 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]