These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 32786700)

  • 1. Improved Scaffold Hopping in Ligand-Based Virtual Screening Using Neural Representation Learning.
    Stojanović L; Popović M; Tijanić N; Rakočević G; Kalinić M
    J Chem Inf Model; 2020 Oct; 60(10):4629-4639. PubMed ID: 32786700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Employing Molecular Conformations for Ligand-Based Virtual Screening with Equivariant Graph Neural Network and Deep Multiple Instance Learning.
    Gu Y; Li J; Kang H; Zhang B; Zheng S
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Domain-Specific Fingerprints Generated Through Neural Networks to Enhance Ligand-Based Virtual Screening.
    Menke J; Koch O
    J Chem Inf Model; 2021 Feb; 61(2):664-675. PubMed ID: 33497572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LBVS: an online platform for ligand-based virtual screening using publicly accessible databases.
    Zheng M; Liu Z; Yan X; Ding Q; Gu Q; Xu J
    Mol Divers; 2014 Nov; 18(4):829-40. PubMed ID: 25182364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the relevance of query definition in the performance of 3D ligand-based virtual screening.
    Vázquez J; García R; Llinares P; Luque FJ; Herrero E
    J Comput Aided Mol Des; 2024 Apr; 38(1):18. PubMed ID: 38573547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DENVIS: Scalable and High-Throughput Virtual Screening Using Graph Neural Networks with Atomic and Surface Protein Pocket Features.
    Krasoulis A; Antonopoulos N; Pitsikalis V; Theodorakis S
    J Chem Inf Model; 2022 Oct; 62(19):4642-4659. PubMed ID: 36154119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum probability ranking principle for ligand-based virtual screening.
    Al-Dabbagh MM; Salim N; Himmat M; Ahmed A; Saeed F
    J Comput Aided Mol Des; 2017 Apr; 31(4):365-378. PubMed ID: 28220440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hard exudate detection based on deep model learned information and multi-feature joint representation for diabetic retinopathy screening.
    Wang H; Yuan G; Zhao X; Peng L; Wang Z; He Y; Qu C; Peng Z
    Comput Methods Programs Biomed; 2020 Jul; 191():105398. PubMed ID: 32092614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QPoweredCompound2DeNovoDrugPropMax - a novel programmatic tool incorporating deep learning and
    Geoffrey A S B; Madaj R; Valluri PP
    J Biomol Struct Dyn; 2023 Mar; 41(5):1790-1797. PubMed ID: 35007471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep scaffold hopping with multimodal transformer neural networks.
    Zheng S; Lei Z; Ai H; Chen H; Deng D; Yang Y
    J Cheminform; 2021 Nov; 13(1):87. PubMed ID: 34774103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereoselective virtual screening of the ZINC database using atom pair 3D-fingerprints.
    Awale M; Jin X; Reymond JL
    J Cheminform; 2015; 7():3. PubMed ID: 25750664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Few-Shot Learning for Low-Data Drug Discovery.
    Vella D; Ebejer JP
    J Chem Inf Model; 2023 Jan; 63(1):27-42. PubMed ID: 36410391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast protein structure comparison through effective representation learning with contrastive graph neural networks.
    Xia C; Feng SH; Xia Y; Pan X; Shen HB
    PLoS Comput Biol; 2022 Mar; 18(3):e1009986. PubMed ID: 35324898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De Novo Molecule Design by Translating from Reduced Graphs to SMILES.
    Pogány P; Arad N; Genway S; Pickett SD
    J Chem Inf Model; 2019 Mar; 59(3):1136-1146. PubMed ID: 30525594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaffold hopping using two-dimensional fingerprints: true potential, black magic, or a hopeless endeavor? Guidelines for virtual screening.
    Vogt M; Stumpfe D; Geppert H; Bajorath J
    J Med Chem; 2010 Aug; 53(15):5707-15. PubMed ID: 20684607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graph Attention Network based mapping of knowledge relations between chemical spaces of Nuclear factor kappa B and Centella asiatica.
    P V; Mohanan M; U K S; E Pa S; U C A J
    Comput Biol Chem; 2023 Dec; 107():107955. PubMed ID: 37734134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A boosting framework for visuality-preserving distance metric learning and its application to medical image retrieval.
    Yang L; Jin R; Mummert L; Sukthankar R; Goode A; Zheng B; Hoi SC; Satyanarayanan M
    IEEE Trans Pattern Anal Mach Intell; 2010 Jan; 32(1):30-44. PubMed ID: 19926897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A learning-based framework for miRNA-disease association identification using neural networks.
    Peng J; Hui W; Li Q; Chen B; Hao J; Jiang Q; Shang X; Wei Z
    Bioinformatics; 2019 Nov; 35(21):4364-4371. PubMed ID: 30977780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning-to-rank technique based on ignoring meaningless ranking orders between compounds.
    Ohue M; Suzuki SD; Akiyama Y
    J Mol Graph Model; 2019 Nov; 92():192-200. PubMed ID: 31377536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TF3P: Three-Dimensional Force Fields Fingerprint Learned by Deep Capsular Network.
    Wang Y; Hu J; Lai J; Li Y; Jin H; Zhang L; Zhang LR; Liu ZM
    J Chem Inf Model; 2020 Jun; 60(6):2754-2765. PubMed ID: 32392062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.