These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32786714)

  • 1. Efficient and Accurate Simulations of Vibrational and Electronic Spectra with Symmetry-Preserving Neural Network Models for Tensorial Properties.
    Zhang Y; Ye S; Zhang J; Hu C; Jiang J; Jiang B
    J Phys Chem B; 2020 Aug; 124(33):7284-7290. PubMed ID: 32786714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems.
    Grisafi A; Wilkins DM; Csányi G; Ceriotti M
    Phys Rev Lett; 2018 Jan; 120(3):036002. PubMed ID: 29400528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Energetic Material Properties from Electronic Structure Using 3D Convolutional Neural Networks.
    Casey AD; Son SF; Bilionis I; Barnes BC
    J Chem Inf Model; 2020 Oct; 60(10):4457-4473. PubMed ID: 33054184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Embedded Atom Neural Network Potentials: Efficient and Accurate Machine Learning with a Physically Inspired Representation.
    Zhang Y; Hu C; Jiang B
    J Phys Chem Lett; 2019 Sep; 10(17):4962-4967. PubMed ID: 31397157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared Spectra at Coupled Cluster Accuracy from Neural Network Representations.
    Beckmann R; Brieuc F; Schran C; Marx D
    J Chem Theory Comput; 2022 Sep; 18(9):5492-5501. PubMed ID: 35998360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural Networks Reveal the Impact of the Vibrational Dynamics in the Prediction of the Long-Time Mobility of Molecular Glassformers.
    Tripodo A; Cordella G; Puosi F; Malvaldi M; Leporini D
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transferable Multilevel Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multitask Learning.
    Liu Z; Lin L; Jia Q; Cheng Z; Jiang Y; Guo Y; Ma J
    J Chem Inf Model; 2021 Mar; 61(3):1066-1082. PubMed ID: 33629839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the DNA Conductance Using a Deep Feedforward Neural Network Model.
    Aggarwal A; Vinayak V; Bag S; Bhattacharyya C; Waghmare UV; Maiti PK
    J Chem Inf Model; 2021 Jan; 61(1):106-114. PubMed ID: 33320660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universal machine learning for the response of atomistic systems to external fields.
    Zhang Y; Jiang B
    Nat Commun; 2023 Oct; 14(1):6424. PubMed ID: 37827998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic Configurations of 3d Transition-Metal Compounds Using Local Structure and Neural Networks.
    Zhang W; Berthebaud D; Halet JF; Mori T
    J Phys Chem A; 2022 Oct; 126(40):7373-7381. PubMed ID: 36178210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tensorial Properties via the Neuroevolution Potential Framework: Fast Simulation of Infrared and Raman Spectra.
    Xu N; Rosander P; Schäfer C; Lindgren E; Österbacka N; Fang M; Chen W; He Y; Fan Z; Erhart P
    J Chem Theory Comput; 2024 Apr; 20(8):3273-3284. PubMed ID: 38572734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Informing geometric deep learning with electronic interactions to accelerate quantum chemistry.
    Qiao Z; Christensen AS; Welborn M; Manby FR; Anandkumar A; Miller TF
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2205221119. PubMed ID: 35901215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-consistent determination of long-range electrostatics in neural network potentials.
    Gao A; Remsing RC
    Nat Commun; 2022 Mar; 13(1):1572. PubMed ID: 35322046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the interplay of the potential energy and dipole moment surfaces in controlling the infrared activity of liquid water.
    Medders GR; Paesani F
    J Chem Phys; 2015 Jun; 142(21):212411. PubMed ID: 26049431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. IV. Coupled diabatic potential energy matrices.
    Xie C; Zhu X; Yarkony DR; Guo H
    J Chem Phys; 2018 Oct; 149(14):144107. PubMed ID: 30316273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning epidemic threshold in complex networks by Convolutional Neural Network.
    Ni Q; Kang J; Tang M; Liu Y; Zou Y
    Chaos; 2019 Nov; 29(11):113106. PubMed ID: 31779342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A machine learning potential for simulating infrared spectra of nanosilicate clusters.
    Tang Z; Bromley ST; Hammer B
    J Chem Phys; 2023 Jun; 158(22):. PubMed ID: 37290080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials.
    Zaverkin V; Kästner J
    J Chem Theory Comput; 2020 Aug; 16(8):5410-5421. PubMed ID: 32672968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-dimensional neural network potentials for accurate vibrational frequencies: the formic acid dimer benchmark.
    Shanavas Rasheeda D; Martín Santa Daría A; Schröder B; Mátyus E; Behler J
    Phys Chem Chem Phys; 2022 Dec; 24(48):29381-29392. PubMed ID: 36459127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Energetics Materials' Crystalline Density from Chemical Structure by Machine Learning.
    Nguyen P; Loveland D; Kim JT; Karande P; Hiszpanski AM; Han TY
    J Chem Inf Model; 2021 May; 61(5):2147-2158. PubMed ID: 33899482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.