BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32786714)

  • 1. Efficient and Accurate Simulations of Vibrational and Electronic Spectra with Symmetry-Preserving Neural Network Models for Tensorial Properties.
    Zhang Y; Ye S; Zhang J; Hu C; Jiang J; Jiang B
    J Phys Chem B; 2020 Aug; 124(33):7284-7290. PubMed ID: 32786714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems.
    Grisafi A; Wilkins DM; Csányi G; Ceriotti M
    Phys Rev Lett; 2018 Jan; 120(3):036002. PubMed ID: 29400528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Energetic Material Properties from Electronic Structure Using 3D Convolutional Neural Networks.
    Casey AD; Son SF; Bilionis I; Barnes BC
    J Chem Inf Model; 2020 Oct; 60(10):4457-4473. PubMed ID: 33054184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Embedded Atom Neural Network Potentials: Efficient and Accurate Machine Learning with a Physically Inspired Representation.
    Zhang Y; Hu C; Jiang B
    J Phys Chem Lett; 2019 Sep; 10(17):4962-4967. PubMed ID: 31397157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared Spectra at Coupled Cluster Accuracy from Neural Network Representations.
    Beckmann R; Brieuc F; Schran C; Marx D
    J Chem Theory Comput; 2022 Sep; 18(9):5492-5501. PubMed ID: 35998360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural Networks Reveal the Impact of the Vibrational Dynamics in the Prediction of the Long-Time Mobility of Molecular Glassformers.
    Tripodo A; Cordella G; Puosi F; Malvaldi M; Leporini D
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transferable Multilevel Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multitask Learning.
    Liu Z; Lin L; Jia Q; Cheng Z; Jiang Y; Guo Y; Ma J
    J Chem Inf Model; 2021 Mar; 61(3):1066-1082. PubMed ID: 33629839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the DNA Conductance Using a Deep Feedforward Neural Network Model.
    Aggarwal A; Vinayak V; Bag S; Bhattacharyya C; Waghmare UV; Maiti PK
    J Chem Inf Model; 2021 Jan; 61(1):106-114. PubMed ID: 33320660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universal machine learning for the response of atomistic systems to external fields.
    Zhang Y; Jiang B
    Nat Commun; 2023 Oct; 14(1):6424. PubMed ID: 37827998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic Configurations of 3d Transition-Metal Compounds Using Local Structure and Neural Networks.
    Zhang W; Berthebaud D; Halet JF; Mori T
    J Phys Chem A; 2022 Oct; 126(40):7373-7381. PubMed ID: 36178210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Informing geometric deep learning with electronic interactions to accelerate quantum chemistry.
    Qiao Z; Christensen AS; Welborn M; Manby FR; Anandkumar A; Miller TF
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2205221119. PubMed ID: 35901215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-consistent determination of long-range electrostatics in neural network potentials.
    Gao A; Remsing RC
    Nat Commun; 2022 Mar; 13(1):1572. PubMed ID: 35322046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tensorial Properties via the Neuroevolution Potential Framework: Fast Simulation of Infrared and Raman Spectra.
    Xu N; Rosander P; Schäfer C; Lindgren E; Österbacka N; Fang M; Chen W; He Y; Fan Z; Erhart P
    J Chem Theory Comput; 2024 Apr; 20(8):3273-3284. PubMed ID: 38572734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the interplay of the potential energy and dipole moment surfaces in controlling the infrared activity of liquid water.
    Medders GR; Paesani F
    J Chem Phys; 2015 Jun; 142(21):212411. PubMed ID: 26049431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. IV. Coupled diabatic potential energy matrices.
    Xie C; Zhu X; Yarkony DR; Guo H
    J Chem Phys; 2018 Oct; 149(14):144107. PubMed ID: 30316273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning epidemic threshold in complex networks by Convolutional Neural Network.
    Ni Q; Kang J; Tang M; Liu Y; Zou Y
    Chaos; 2019 Nov; 29(11):113106. PubMed ID: 31779342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A machine learning potential for simulating infrared spectra of nanosilicate clusters.
    Tang Z; Bromley ST; Hammer B
    J Chem Phys; 2023 Jun; 158(22):. PubMed ID: 37290080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials.
    Zaverkin V; Kästner J
    J Chem Theory Comput; 2020 Aug; 16(8):5410-5421. PubMed ID: 32672968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-dimensional neural network potentials for accurate vibrational frequencies: the formic acid dimer benchmark.
    Shanavas Rasheeda D; Martín Santa Daría A; Schröder B; Mátyus E; Behler J
    Phys Chem Chem Phys; 2022 Dec; 24(48):29381-29392. PubMed ID: 36459127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Energetics Materials' Crystalline Density from Chemical Structure by Machine Learning.
    Nguyen P; Loveland D; Kim JT; Karande P; Hiszpanski AM; Han TY
    J Chem Inf Model; 2021 May; 61(5):2147-2158. PubMed ID: 33899482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.