BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 32786832)

  • 1. Evaluation of the Quality of a High-Resistant Starch and Low-Glutelin Rice (
    Guo D; Ling X; Zhou X; Li X; Wang J; Qiu S; Yang Y; Zhang B
    J Agric Food Chem; 2020 Sep; 68(36):9733-9742. PubMed ID: 32786832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat-Moisture Treatment Further Reduces In Vitro Digestibility and Enhances Resistant Starch Content of a High-Resistant Starch and Low-Glutelin Rice.
    Li Z; Guo D; Li X; Tang Z; Ling X; Zhou T; Zhang B
    Foods; 2021 Oct; 10(11):. PubMed ID: 34828843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of the indica rice SSIIa allele on the apparent high amylose starch from rice grain with downregulated japonica SBEIIb.
    Luo J; Butardo VM; Yang Q; Konik-Rose C; Colgrave ML; Millar A; Jobling SA; Li Z
    Theor Appl Genet; 2020 Oct; 133(10):2961-2974. PubMed ID: 32651668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the endosperm starch and the pleiotropic effects of biosynthetic enzymes on their properties in novel mutant rice lines with high resistant starch and amylose content.
    Itoh Y; Crofts N; Abe M; Hosaka Y; Fujita N
    Plant Sci; 2017 May; 258():52-60. PubMed ID: 28330563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of High-Amylose Rice through CRISPR/Cas9-Mediated Targeted Mutagenesis of Starch Branching Enzymes.
    Sun Y; Jiao G; Liu Z; Zhang X; Li J; Guo X; Du W; Du J; Francis F; Zhao Y; Xia L
    Front Plant Sci; 2017; 8():298. PubMed ID: 28326091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing the level of resistant starch in 'Presidio' rice through multiplex CRISPR-Cas9 gene editing of starch branching enzyme genes.
    Biswas S; Ibarra O; Shaphek M; Molina-Risco M; Faion-Molina M; Bellinatti-Della Gracia M; Thomson MJ; Septiningsih EM
    Plant Genome; 2023 Jun; 16(2):e20225. PubMed ID: 35713092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient breeding of low glutelin content rice germplasm by simultaneous editing multiple glutelin genes via CRISPR/Cas9.
    Chen Z; Du H; Tao Y; Xu Y; Wang F; Li B; Zhu QH; Niu H; Yang J
    Plant Sci; 2022 Nov; 324():111449. PubMed ID: 36058302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Down-Regulation of Rice Glutelin by
    Chandra D; Cho K; Pham HA; Lee JY; Han O
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of starch composition, structure and properties through editing of TaSBEIIa in both winter and spring wheat varieties by CRISPR/Cas9.
    Li J; Jiao G; Sun Y; Chen J; Zhong Y; Yan L; Jiang D; Ma Y; Xia L
    Plant Biotechnol J; 2021 May; 19(5):937-951. PubMed ID: 33236499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-amylose rice improves indices of animal health in normal and diabetic rats.
    Zhu L; Gu M; Meng X; Cheung SC; Yu H; Huang J; Sun Y; Shi Y; Liu Q
    Plant Biotechnol J; 2012 Apr; 10(3):353-62. PubMed ID: 22145600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low glutelin content1: a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice.
    Kusaba M; Miyahara K; Iida S; Fukuoka H; Takano T; Sassa H; Nishimura M; Nishio T
    Plant Cell; 2003 Jun; 15(6):1455-67. PubMed ID: 12782736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of PCR markers to detect the glb1 and Lgc1 mutations for the production of low easy-to-digest protein rice varieties.
    Morita R; Kusaba M; Iida S; Nishio T; Nishimura M
    Theor Appl Genet; 2009 Jun; 119(1):125-30. PubMed ID: 19373444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compensatory Modulation of Seed Storage Protein Synthesis and Alteration of Starch Accumulation by Selective Editing of 13 kDa Prolamin Genes by CRISPR-Cas9 in Rice.
    Pham HA; Cho K; Tran AD; Chandra D; So J; Nguyen HTT; Sang H; Lee JY; Han O
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties.
    Zhang J; Zhang H; Botella JR; Zhu JK
    J Integr Plant Biol; 2018 May; 60(5):369-375. PubMed ID: 29210506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Function of DNA Demethylase Gene ROS1a Null Mutant on Seed Development in Rice (
    Irshad F; Li C; Wu HY; Yan Y; Xu JH
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35742811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of major glutelin-deficient (GluA, GluB, and GluC) semi-dwarf Koshihikari rice line.
    Wakasa Y; Kawakatsu T; Ishimaru K; Ozawa K
    Plant Cell Rep; 2024 Feb; 43(2):51. PubMed ID: 38308138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomolecular analyses of starch and starch granule proteins in the high-amylose rice mutant Goami 2.
    Butardo VM; Daygon VD; Colgrave ML; Campbell PM; Resurreccion A; Cuevas RP; Jobling SA; Tetlow I; Rahman S; Morell M; Fitzgerald M
    J Agric Food Chem; 2012 Nov; 60(46):11576-85. PubMed ID: 23009566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of simultaneous inhibition of starch branching enzymes I and IIb on the crystalline structure of rice starches with different amylose contents.
    Man J; Yang Y; Huang J; Zhang C; Chen Y; Wang Y; Gu M; Liu Q; Wei C
    J Agric Food Chem; 2013 Oct; 61(41):9930-7. PubMed ID: 24063623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iTRAQ-based quantitative glutelin proteomic analysis reveals differentially expressed proteins in the physiological metabolism process during endosperm development and their impacts on yield and quality in autotetraploid rice.
    Xian L; Long Y; Yang M; Chen Z; Wu J; Liu X; Wang L
    Plant Sci; 2021 May; 306():110859. PubMed ID: 33775365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. α-globulin-rich rice cultivar, low glutelin content-1 (LGC-1), decreases serum cholesterol concentration in exogenously hypercholesterolemic rats.
    Yuan X; Minobe Y; Tanaka Y; Fukuda Y; Furukawa Y; Miyago M; Mizokami T; Tsai WT; Jiang Z; Tong LT; Akasaka T; Shirouchi B; Toyosawa Y; Kumamaru T; Sato M
    J Sci Food Agric; 2021 Dec; 101(15):6417-6423. PubMed ID: 33982308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.