These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 32786857)
1. Transcription Factor PdeR Is Involved in Fungal Development, Metabolic Change, and Pathogenesis of Gray Mold Han JW; Kim DY; Lee YJ; Choi YR; Kim B; Choi GJ; Han SW; Kim H J Agric Food Chem; 2020 Aug; 68(34):9171-9179. PubMed ID: 32786857 [TBL] [Abstract][Full Text] [Related]
2. The Fungal Transcription Factor BcTbs1 from Zhang Y; Jia C; Liu Y; Li G; Li B; Shi W; Zhang Y; Hou J; Qin Q; Zhang M; Qin J J Agric Food Chem; 2024 Sep; 72(38):20816-20830. PubMed ID: 39261294 [TBL] [Abstract][Full Text] [Related]
3. Novel Yang S; Sun J; Xue A; Li G; Sun C; Hou J; Qin QM; Zhang M J Agric Food Chem; 2024 Aug; 72(34):18824-18839. PubMed ID: 39140189 [TBL] [Abstract][Full Text] [Related]
4. The Autophagy Gene Ren W; Liu N; Sang C; Shi D; Zhou M; Chen C; Qin Q; Chen W Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29572212 [TBL] [Abstract][Full Text] [Related]
5. Cyclophilin BcCyp2 Regulates Infection-Related Development to Facilitate Virulence of the Gray Mold Fungus Sun J; Sun CH; Chang HW; Yang S; Liu Y; Zhang MZ; Hou J; Zhang H; Li GH; Qin QM Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33567582 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome profiling of Botrytis cinerea conidial germination reveals upregulation of infection-related genes during the prepenetration stage. Leroch M; Kleber A; Silva E; Coenen T; Koppenhöfer D; Shmaryahu A; Valenzuela PD; Hahn M Eukaryot Cell; 2013 Apr; 12(4):614-26. PubMed ID: 23417562 [TBL] [Abstract][Full Text] [Related]
7. BcMctA, a putative monocarboxylate transporter, is required for pathogenicity in Botrytis cinerea. Cui Z; Gao N; Wang Q; Ren Y; Wang K; Zhu T Curr Genet; 2015 Nov; 61(4):545-53. PubMed ID: 25634672 [TBL] [Abstract][Full Text] [Related]
8. The GATA transcription factor BcWCL2 regulates citric acid secretion to maintain redox homeostasis and full virulence in Ren W; Qian C; Ren D; Cai Y; Deng Z; Zhang N; Wang C; Wang Y; Zhu P; Xu L mBio; 2024 Jul; 15(7):e0013324. PubMed ID: 38814088 [No Abstract] [Full Text] [Related]
9. The Subtilisin-Like Protease Bcser2 Affects the Sclerotial Formation, Conidiation and Virulence of Liu X; Xie J; Fu Y; Jiang D; Chen T; Cheng J Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963451 [No Abstract] [Full Text] [Related]
10. Involvement of the cysteine protease BcAtg4 in development and virulence of Botrytis cinerea. Liu N; Ren W; Li F; Chen C; Ma Z Curr Genet; 2019 Feb; 65(1):293-300. PubMed ID: 30167777 [TBL] [Abstract][Full Text] [Related]
11. Loss of bcbrn1 and bcpks13 in Botrytis cinerea Not Only Blocks Melanization But Also Increases Vegetative Growth and Virulence. Zhang C; He Y; Zhu P; Chen L; Wang Y; Ni B; Xu L Mol Plant Microbe Interact; 2015 Oct; 28(10):1091-101. PubMed ID: 26035129 [TBL] [Abstract][Full Text] [Related]
12. The key gluconeogenic gene PCK1 is crucial for virulence of Botrytis cinerea via initiating its conidial germination and host penetration. Liu JK; Chang HW; Liu Y; Qin YH; Ding YH; Wang L; Zhao Y; Zhang MZ; Cao SN; Li LT; Liu W; Li GH; Qin QM Environ Microbiol; 2018 May; 20(5):1794-1814. PubMed ID: 29614212 [TBL] [Abstract][Full Text] [Related]
13. A novel Botrytis cinerea-specific gene BcHBF1 enhances virulence of the grey mould fungus via promoting host penetration and invasive hyphal development. Liu Y; Liu JK; Li GH; Zhang MZ; Zhang YY; Wang YY; Hou J; Yang S; Sun J; Qin QM Mol Plant Pathol; 2019 May; 20(5):731-747. PubMed ID: 31008573 [TBL] [Abstract][Full Text] [Related]
14. Membrane protein Bcsdr2 mediates biofilm integrity, hyphal growth and virulence of Botrytis cinerea. Zhang W; Cao Y; Li H; Rasmey AM; Zhang K; Shi L; Ge B Appl Microbiol Biotechnol; 2024 Jun; 108(1):398. PubMed ID: 38940906 [TBL] [Abstract][Full Text] [Related]
15. Botrytis cinerea Transcription Factor BcXyr1 Regulates (Hemi-)Cellulase Production and Fungal Virulence. Ma L; Liu T; Zhang K; Shi H; Zhang L; Zou G; Sharon A mSystems; 2022 Dec; 7(6):e0104222. PubMed ID: 36468854 [TBL] [Abstract][Full Text] [Related]
16. Transcriptomic changes in the PacC transcription factor deletion mutant of the plant pathogenic fungus Botrytis cinerea under acidic and neutral conditions. Rascle C; Malbert B; Goncalves I; Choquer M; Bruel C; Poussereau N BMC Genom Data; 2024 Oct; 25(1):87. PubMed ID: 39385086 [TBL] [Abstract][Full Text] [Related]
17. Defects in the Ferroxidase That Participates in the Reductive Iron Assimilation System Results in Hypervirulence in Vasquez-Montaño E; Hoppe G; Vega A; Olivares-Yañez C; Canessa P mBio; 2020 Aug; 11(4):. PubMed ID: 32753496 [TBL] [Abstract][Full Text] [Related]
18. Exocyst subunit Ma Z; Chen Z; Wang W; Wang K; Zhu T J Biosci; 2020; 45():. PubMed ID: 33184241 [No Abstract] [Full Text] [Related]
19. The botrydial biosynthetic gene cluster of Botrytis cinerea displays a bipartite genomic structure and is positively regulated by the putative Zn(II) Porquier A; Morgant G; Moraga J; Dalmais B; Luyten I; Simon A; Pradier JM; Amselem J; Collado IG; Viaud M Fungal Genet Biol; 2016 Nov; 96():33-46. PubMed ID: 27721016 [TBL] [Abstract][Full Text] [Related]
20. The putative H3K36 demethylase BcKDM1 affects virulence, stress responses and photomorphogenesis in Botrytis cinerea. Schumacher J; Studt L; Tudzynski P Fungal Genet Biol; 2019 Feb; 123():14-24. PubMed ID: 30445217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]