BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 32786908)

  • 1. A Benzene-Mapping Approach for Uncovering Cryptic Pockets in Membrane-Bound Proteins.
    Zuzic L; Marzinek JK; Warwicker J; Bond PJ
    J Chem Theory Comput; 2020 Sep; 16(9):5948-5959. PubMed ID: 32786908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncovering cryptic pockets in the SARS-CoV-2 spike glycoprotein.
    Zuzic L; Samsudin F; Shivgan AT; Raghuvamsi PV; Marzinek JK; Boags A; Pedebos C; Tulsian NK; Warwicker J; MacAry P; Crispin M; Khalid S; Anand GS; Bond PJ
    Structure; 2022 Aug; 30(8):1062-1074.e4. PubMed ID: 35660160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PlayMolecule CrypticScout: Predicting Protein Cryptic Sites Using Mixed-Solvent Molecular Simulations.
    Martinez-Rosell G; Lovera S; Sands ZA; De Fabritiis G
    J Chem Inf Model; 2020 Apr; 60(4):2314-2324. PubMed ID: 32175736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A ligand-binding pocket in the dengue virus envelope glycoprotein.
    Modis Y; Ogata S; Clements D; Harrison SC
    Proc Natl Acad Sci U S A; 2003 Jun; 100(12):6986-91. PubMed ID: 12759475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting a conserved pocket (n-octyl-β-D-glucoside) on the dengue virus envelope protein by small bioactive molecule inhibitors.
    Naresh P; Selvaraj A; Shyam Sundar P; Murugesan S; Sathianarayanan S; Namboori P K K; Jubie S
    J Biomol Struct Dyn; 2022 Jul; 40(11):4866-4878. PubMed ID: 33345726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pH-dependent cluster of charges in a conserved cryptic pocket on flaviviral envelopes.
    Zuzic L; Marzinek JK; Anand GS; Warwicker J; Bond PJ
    Elife; 2023 May; 12():. PubMed ID: 37144875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small Glycols Discover Cryptic Pockets on Proteins for Fragment-Based Approaches.
    Bansia H; Mahanta P; Yennawar NH; Ramakumar S
    J Chem Inf Model; 2021 Mar; 61(3):1322-1333. PubMed ID: 33570386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Receptor-Guided De Novo Design of Dengue Envelope Protein Inhibitors.
    Desai VH; Kumar SP; Pandya HA; Solanki HA
    Appl Biochem Biotechnol; 2015 Oct; 177(4):861-78. PubMed ID: 26299376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting domain-III hinging of dengue envelope (DENV-2) protein by MD simulations, docking and free energy calculations.
    Dubey KD; Tiwari G; Ojha RP
    J Mol Model; 2017 Apr; 23(4):102. PubMed ID: 28255859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different footprints of the Zika and dengue surface proteins on viral membranes.
    Wewer CR; Khandelia H
    Soft Matter; 2018 Jul; 14(27):5615-5621. PubMed ID: 29932192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo design approaches targeting an envelope protein pocket to identify small molecules against dengue virus.
    Leal ES; Adler NS; Fernández GA; Gebhard LG; Battini L; Aucar MG; Videla M; Monge ME; Hernández de Los Ríos A; Acosta Dávila JA; Morell ML; Cordo SM; García CC; Gamarnik AV; Cavasotto CN; Bollini M
    Eur J Med Chem; 2019 Nov; 182():111628. PubMed ID: 31472473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Application of Ligand-Mapping Molecular Dynamics Simulations to the Rational Design of Peptidic Modulators of Protein-Protein Interactions.
    Tan YS; Spring DR; Abell C; Verma CS
    J Chem Theory Comput; 2015 Jul; 11(7):3199-210. PubMed ID: 26575757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Docking and Molecular Dynamics Simulation Studies to Predict Flavonoid Binding on the Surface of DENV2 E Protein.
    Ismail NA; Jusoh SA
    Interdiscip Sci; 2017 Dec; 9(4):499-511. PubMed ID: 26969331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A peptide inhibitor derived from the conserved ectodomain region of DENV membrane (M) protein with activity against dengue virus infection.
    Panya A; Sawasdee N; Junking M; Srisawat C; Choowongkomon K; Yenchitsomanus PT
    Chem Biol Drug Des; 2015 Nov; 86(5):1093-104. PubMed ID: 25891143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the stability of dengue virus envelope protein dimer using well-tempered metadynamics simulations.
    Zhang H; Kai ELJ; Lu L
    Proteins; 2020 May; 88(5):643-653. PubMed ID: 31697409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pushing the Envelope: Dengue Viral Membrane Coaxed into Shape by Molecular Simulations.
    Marzinek JK; Holdbrook DA; Huber RG; Verma C; Bond PJ
    Structure; 2016 Aug; 24(8):1410-1420. PubMed ID: 27396828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and Functional Characterization of a Cross-Reactive Dengue Virus Neutralizing Antibody that Recognizes a Cryptic Epitope.
    Li J; Watterson D; Chang CW; Che XY; Li XQ; Ericsson DJ; Qiu LW; Cai JP; Chen J; Fry SR; Cheung STM; Cooper MA; Young PR; Kobe B
    Structure; 2018 Jan; 26(1):51-59.e4. PubMed ID: 29249606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational and energy evaluations of novel peptides binding to dengue virus envelope protein.
    Amir-Hassan A; Lee VS; Baharuddin A; Othman S; Xu Y; Huang M; Yusof R; Rahman NA; Othman R
    J Mol Graph Model; 2017 Jun; 74():273-287. PubMed ID: 28458006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of pH on dimeric interactions for DENV envelope protein: an insight from molecular dynamics study.
    Dubey KD; Chaubey AK; Ojha RP
    Biochim Biophys Acta; 2011 Dec; 1814(12):1796-801. PubMed ID: 22005292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New pockets in dengue virus 2 surface identified by molecular dynamics simulation.
    Fuzo CA; Degrève L
    J Mol Model; 2013 Mar; 19(3):1369-77. PubMed ID: 23197323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.