These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

511 related articles for article (PubMed ID: 32786917)

  • 1. Ab Initio Calculations of Free Energy of Activation at Multiple Electronic Structure Levels Made Affordable: An Effective Combination of Perturbation Theory and Machine Learning.
    Bučko T; Gešvandtnerová M; Rocca D
    J Chem Theory Comput; 2020 Oct; 16(10):6049-6060. PubMed ID: 32786917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the Accuracy of Machine Learning Thermodynamic Perturbation Theory: Density Functional Theory and Beyond.
    Herzog B; Chagas da Silva M; Casier B; Badawi M; Pascale F; Bučko T; Lebègue S; Rocca D
    J Chem Theory Comput; 2022 Mar; 18(3):1382-1394. PubMed ID: 35191699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic Spectral Methods for Ab Initio Molecular Electronic Energy Surfaces: Transitioning From Small-Molecule to Biomolecular-Suitable Approaches.
    Mills JD; Ben-Nun M; Rollin K; Bromley MW; Li J; Hinde RJ; Winstead CL; Sheehy JA; Boatz JA; Langhoff PW
    J Phys Chem B; 2016 Aug; 120(33):8321-37. PubMed ID: 27232159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computing RPA Adsorption Enthalpies by Machine Learning Thermodynamic Perturbation Theory.
    Chehaibou B; Badawi M; Bučko T; Bazhirov T; Rocca D
    J Chem Theory Comput; 2019 Nov; 15(11):6333-6342. PubMed ID: 31614086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free energy perturbation study of water dimer dissociation kinetics.
    Ming Y; Lai G; Tong C; Wood RH; Doren DJ
    J Chem Phys; 2004 Jul; 121(2):773-7. PubMed ID: 15260604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning to Approximate Density Functionals.
    Kalita B; Li L; McCarty RJ; Burke K
    Acc Chem Res; 2021 Feb; 54(4):818-826. PubMed ID: 33534553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory.
    Göltl F; Grüneis A; Bučko T; Hafner J
    J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: Ab initio and free energy quantum mechanical/molecular mechanical calculations.
    Dieterich JM; Werner HJ; Mata RA; Metz S; Thiel W
    J Chem Phys; 2010 Jan; 132(3):035101. PubMed ID: 20095751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient computation of free energy surfaces of chemical reactions using ab initio molecular dynamics with hybrid functionals and plane waves.
    Mandal S; Nair NN
    J Comput Chem; 2020 Jul; 41(19):1790-1797. PubMed ID: 32407582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reference-Quality Free Energy Barriers in Catalysis from Machine Learning Thermodynamic Perturbation Theory.
    Rey J; Chizallet C; Rocca D; Bučko T; Badawi M
    Angew Chem Int Ed Engl; 2024 Feb; 63(6):e202312392. PubMed ID: 38055209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multireference Generalization of the Weighted Thermodynamic Perturbation Method.
    Giese TJ; Zeng J; York DM
    J Phys Chem A; 2022 Nov; 126(45):8519-8533. PubMed ID: 36301936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab Initio Calculations for Molecule-Surface Interactions with Chemical Accuracy.
    Sauer J
    Acc Chem Res; 2019 Dec; 52(12):3502-3510. PubMed ID: 31765121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tests of Monte Carlo perturbation theory for the free energy of liquid copper.
    Greeff CW
    J Chem Phys; 2008 May; 128(18):184104. PubMed ID: 18532796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerating
    Jadrich RB; Leiding JA
    J Phys Chem B; 2020 Jul; 124(26):5488-5497. PubMed ID: 32484668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing ab initio density-functional and wave function theories: the impact of correlation on the electronic density and the role of the correlation potential.
    Grabowski I; Teale AM; Śmiga S; Bartlett RJ
    J Chem Phys; 2011 Sep; 135(11):114111. PubMed ID: 21950854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio calculations of free energy barriers for chemical reactions in solution: proton transfer in [FHF]-.
    Muller RP; Warshel A
    Pac Symp Biocomput; 1996; ():524-38. PubMed ID: 9390256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels.
    Dral PO; Owens A; Yurchenko SN; Thiel W
    J Chem Phys; 2017 Jun; 146(24):244108. PubMed ID: 28668062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Ion Thermodynamics from First Principles: Calculation of the Absolute Hydration Free Energy and Single-Electrode Potential of Aqueous Li
    Prasetyo N; Hünenberger PH; Hofer TS
    J Chem Theory Comput; 2018 Dec; 14(12):6443-6459. PubMed ID: 30284829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.