These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 32786988)

  • 21. Inverted Lowest Singlet and Triplet Excitation Energy Ordering of Graphitic Carbon Nitride Flakes.
    Wang X; Wang A; Zhao M; Marom N
    J Phys Chem Lett; 2023 Dec; 14(49):10910-10919. PubMed ID: 38033187
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessing the performance of density functional theory for the electronic structure of metal-salens: the M06 suite of functionals and the d⁴-metals.
    Takatani T; Sears JS; Sherrill CD
    J Phys Chem A; 2010 Nov; 114(43):11714-8. PubMed ID: 20942498
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermally Activated Delayed Fluorescence (TADF) Path toward Efficient Electroluminescence in Purely Organic Materials: Molecular Level Insight.
    Chen XK; Kim D; Brédas JL
    Acc Chem Res; 2018 Sep; 51(9):2215-2224. PubMed ID: 30141908
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Excited-state minima and emission energies of retinal chromophore analogues: Performance of CASSCF and CC2 methods as compared with CASPT2.
    Szefczyk B; Grabarek D; Walczak E; Andruniów T
    J Comput Chem; 2017 Jul; 38(20):1799-1810. PubMed ID: 28512740
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finding the optimal exchange-correlation functional to describe the excited state properties of push-pull organic dyes designed for thermally activated delayed fluorescence.
    Cardeynaels T; Paredis S; Deckers J; Brebels S; Vanderzande D; Maes W; Champagne B
    Phys Chem Chem Phys; 2020 Jul; 22(28):16387-16399. PubMed ID: 32657285
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thioxanthen-Based Blue Thermally Activated Delayed Fluorescence Emitters for Organic Light-Emitting Diodes.
    Lee GH; Choi DH; Kim YS
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6796-6800. PubMed ID: 31027032
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Triplet-Singlet Gap in the m-Xylylene Radical: A Not So Simple One.
    Reta Mañeru D; Pal AK; Moreira Ide P; Datta SN; Illas F
    J Chem Theory Comput; 2014 Jan; 10(1):335-45. PubMed ID: 26579914
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Do any types of double-hybrid models render the correct order of excited state energies in inverted singlet-triplet emitters?
    Alipour M; Izadkhast T
    J Chem Phys; 2022 Feb; 156(6):064302. PubMed ID: 35168336
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dissecting the accountability of parameterized and parameter-free single-hybrid and double-hybrid functionals for photophysical properties of TADF-based OLEDs.
    Alipour M; Karimi N
    J Chem Phys; 2017 Jun; 146(23):234304. PubMed ID: 28641443
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Excited-State Properties of Some Thermally Activated Delayed Fluorescence Emitters: Quest for an Accurate and Reliable Computational Method.
    Rohman S; Kar R
    J Phys Chem A; 2022 Jun; 126(22):3452-3462. PubMed ID: 35609339
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Geometries and Vertical Excitation Energies in Retinal Analogues Resolved at the CASPT2 Level of Theory: Critical Assessment of the Performance of CASSCF, CC2, and DFT Methods.
    Walczak E; Szefczyk B; Andruniów T
    J Chem Theory Comput; 2013 Nov; 9(11):4915-27. PubMed ID: 26583410
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs.
    Furukawa T; Nakanotani H; Inoue M; Adachi C
    Sci Rep; 2015 Feb; 5():8429. PubMed ID: 25673259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Negative Singlet-Triplet Excitation Energy Gap in Triangle-Shaped Molecular Emitters for Efficient Triplet Harvesting.
    Sanz-Rodrigo J; Ricci G; Olivier Y; Sancho-García JC
    J Phys Chem A; 2021 Jan; 125(2):513-522. PubMed ID: 33401898
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing the Performances of CASPT2 and NEVPT2 for Vertical Excitation Energies.
    Sarkar R; Loos PF; Boggio-Pasqua M; Jacquemin D
    J Chem Theory Comput; 2022 Apr; 18(4):2418-2436. PubMed ID: 35333060
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Benchmarking TD-DFT and Wave Function Methods for Oscillator Strengths and Excited-State Dipole Moments.
    Sarkar R; Boggio-Pasqua M; Loos PF; Jacquemin D
    J Chem Theory Comput; 2021 Feb; 17(2):1117-1132. PubMed ID: 33492950
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantification of the Ionic Character of Multiconfigurational Wave Functions: The
    do Monte SA; Spada RFK; Alves RLR; Belcher L; Shepard R; Lischka H; Plasser F
    J Phys Chem A; 2023 Nov; 127(46):9842-9852. PubMed ID: 37851528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Double-hybrid density functional theory for excited electronic states of molecules.
    Grimme S; Neese F
    J Chem Phys; 2007 Oct; 127(15):154116. PubMed ID: 17949141
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multireference calculations of the fluorescence, phosphorescence and photodissociation of p-chlorotoluene.
    Liu YJ; Lunell S
    Phys Chem Chem Phys; 2005 Dec; 7(23):3938-42. PubMed ID: 19810322
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Understanding the Fluorescence of TADF Light-Emitting Dyes.
    Valchanov G; Ivanova A; Tadjer A; Chercka D; Baumgarten M
    J Phys Chem A; 2016 Sep; 120(35):6944-55. PubMed ID: 27529727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CASSCF and CASPT2 studies on the structures, transition energies, and dipole moments of ground and excited states for azulene.
    Murakami A; Kobayashi T; Goldberg A; Nakamura S
    J Chem Phys; 2004 Jan; 120(3):1245-52. PubMed ID: 15268250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.