These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 32787030)

  • 1. Dropwise Condensation on a Hierarchical Nanopillar Structured Surface.
    Baba S; Sawada K; Tanaka K; Okamoto A
    Langmuir; 2020 Sep; 36(34):10033-10042. PubMed ID: 32787030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Condensation Behavior of Hierarchical Nano/Microstructured Surfaces Inspired by
    Baba S; Sawada K; Tanaka K; Okamoto A
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32332-32342. PubMed ID: 34190527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dropwise Condensate Comb for Enhanced Heat Transfer.
    Tang Y; Yang X; Wang L; Li Y; Zhu D
    ACS Appl Mater Interfaces; 2023 May; 15(17):21549-21561. PubMed ID: 37083343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning nanostructured surfaces with hybrid wettability areas to enhance condensation.
    Gao S; Liu W; Liu Z
    Nanoscale; 2019 Jan; 11(2):459-466. PubMed ID: 30325374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical Condensation.
    Yan X; Chen F; Sett S; Chavan S; Li H; Feng L; Li L; Zhao F; Zhao C; Huang Z; Miljkovic N
    ACS Nano; 2019 Jul; 13(7):8169-8184. PubMed ID: 31265236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures.
    Zhang P; Maeda Y; Lv F; Takata Y; Orejon D
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35391-35403. PubMed ID: 28925681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biphilic Surfaces with Optimum Hydrophobic Islands on a Superhydrophobic Background for Dropwise Flow Condensation.
    Chehrghani MM; Abbasiasl T; Sadaghiani AK; Koşar A
    Langmuir; 2021 Nov; 37(46):13567-13575. PubMed ID: 34751032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Preston DJ; Enright R; Wang EN
    ACS Nano; 2013 Dec; 7(12):11043-54. PubMed ID: 24261667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation.
    Wen R; Xu S; Zhao D; Lee YC; Ma X; Yang R
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44911-44921. PubMed ID: 29214806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unidirectional Fast Growth and Forced Jumping of Stretched Droplets on Nanostructured Microporous Surfaces.
    Aili A; Li H; Alhosani MH; Zhang T
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21776-86. PubMed ID: 27486890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rationally 3D-Textured Copper Surfaces for Laplace Pressure Imbalance-Induced Enhancement in Dropwise Condensation.
    Sharma CS; Stamatopoulos C; Suter R; von Rohr PR; Poulikakos D
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):29127-29135. PubMed ID: 30067013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Coalescence-Induced Droplet Jumping Height on Hierarchical Superhydrophobic Surfaces.
    Chen X; Weibel JA; Garimella SV
    ACS Omega; 2017 Jun; 2(6):2883-2890. PubMed ID: 31457623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dropwise condensation: From fundamentals of wetting, nucleation, and droplet mobility to performance improvement by advanced functional surfaces.
    Zheng SF; Gross U; Wang XD
    Adv Colloid Interface Sci; 2021 Sep; 295():102503. PubMed ID: 34411880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coalescence-Induced Jumping Droplets on Nanostructured Biphilic Surfaces with Contact Electrification Effects.
    Zhu Y; Tso CY; Ho TC; Leung MKH; Yao S
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11470-11479. PubMed ID: 33630565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uniform and Persistent Jumping Detachment of Condensed Nanodroplets.
    Ma C; Wang L; Xu Z; Tong W; Zheng Q
    Nano Lett; 2024 Jan; 24(4):1439-1446. PubMed ID: 38237068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review of droplet dynamics and dropwise condensation enhancement: Theory, experiments and applications.
    Wang X; Xu B; Chen Z; Del Col D; Li D; Zhang L; Mou X; Liu Q; Yang Y; Cao Q
    Adv Colloid Interface Sci; 2022 Jul; 305():102684. PubMed ID: 35525088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth Rates and Spontaneous Navigation of Condensate Droplets Through Randomly Structured Textures.
    Sharma CS; Combe J; Giger M; Emmerich T; Poulikakos D
    ACS Nano; 2017 Feb; 11(2):1673-1682. PubMed ID: 28170223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dropwise condensation on solid hydrophilic surfaces.
    Cha H; Vahabi H; Wu A; Chavan S; Kim MK; Sett S; Bosch SA; Wang W; Kota AK; Miljkovic N
    Sci Adv; 2020 Jan; 6(2):eaax0746. PubMed ID: 31950076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces.
    Birbarah P; Li Z; Pauls A; Miljkovic N
    Langmuir; 2015 Jul; 31(28):7885-96. PubMed ID: 26110977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Jumping-Droplet Departure.
    Kim MK; Cha H; Birbarah P; Chavan S; Zhong C; Xu Y; Miljkovic N
    Langmuir; 2015 Dec; 31(49):13452-66. PubMed ID: 26571384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.