These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32787044)

  • 1. Evaporation-Crystallization Method to Promote Coalescence-Induced Jumping on Superhydrophobic Surfaces.
    Han T; Choi Y; Kwon JT; Kim MH; Jo H
    Langmuir; 2020 Aug; 36(33):9843-9848. PubMed ID: 32787044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coalescence-Induced Jumping Droplets on Nanostructured Biphilic Surfaces with Contact Electrification Effects.
    Zhu Y; Tso CY; Ho TC; Leung MKH; Yao S
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11470-11479. PubMed ID: 33630565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The temperature dependent dynamics and periodicity of dropwise condensation on surfaces with wetting heterogeneities.
    Feldmann D; Pinchasik BE
    J Colloid Interface Sci; 2023 Aug; 644():146-156. PubMed ID: 37105038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biphilic Surfaces with Optimum Hydrophobic Islands on a Superhydrophobic Background for Dropwise Flow Condensation.
    Chehrghani MM; Abbasiasl T; Sadaghiani AK; Koşar A
    Langmuir; 2021 Nov; 37(46):13567-13575. PubMed ID: 34751032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Out-of-Plane Biphilic Surface Structuring for Enhanced Capillary-Driven Dropwise Condensation.
    Stendardo L; Milionis A; Kokkoris G; Stamatopoulos C; Sharma CS; Kumar R; Donati M; Poulikakos D
    Langmuir; 2023 Jan; 39(4):1585-1592. PubMed ID: 36645348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanograssed Zigzag Structures To Promote Coalescence-Induced Droplet Jumping.
    Han T; Kwak HJ; Kim JH; Kwon JT; Kim MH
    Langmuir; 2019 Jul; 35(27):9093-9099. PubMed ID: 31250651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competing Effects between Condensation and Self-Removal of Water Droplets Determine Antifrosting Performance of Superhydrophobic Surfaces.
    Zhao G; Zou G; Wang W; Geng R; Yan X; He Z; Liu L; Zhou X; Lv J; Wang J
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7805-7814. PubMed ID: 31972085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation.
    Wen R; Xu S; Zhao D; Lee YC; Ma X; Yang R
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44911-44921. PubMed ID: 29214806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable Water Harvesting Surfaces Consisting of Biphilic Nanoscale Topography.
    Hou Y; Shang Y; Yu M; Feng C; Yu H; Yao S
    ACS Nano; 2018 Nov; 12(11):11022-11030. PubMed ID: 30346698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Droplet Jumping: Effects of Droplet Size, Surface Structure, Pinning, and Liquid Properties.
    Yan X; Zhang L; Sett S; Feng L; Zhao C; Huang Z; Vahabi H; Kota AK; Chen F; Miljkovic N
    ACS Nano; 2019 Feb; 13(2):1309-1323. PubMed ID: 30624899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing a Superhydrophobic Surface for Enhanced Atmospheric Corrosion Resistance Based on Coalescence-Induced Droplet Jumping Behavior.
    Chen X; Wang P; Zhang D
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):38276-38284. PubMed ID: 31529958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Coalescence-Induced Droplet Jumping Height on Hierarchical Superhydrophobic Surfaces.
    Chen X; Weibel JA; Garimella SV
    ACS Omega; 2017 Jun; 2(6):2883-2890. PubMed ID: 31457623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures.
    Zhang P; Maeda Y; Lv F; Takata Y; Orejon D
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35391-35403. PubMed ID: 28925681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Engineered Wettability on the Efficiency of Dew Collection.
    Gerasopoulos K; Luedeman WL; Ölçeroglu E; McCarthy M; Benkoski JJ
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4066-4076. PubMed ID: 29297673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces.
    Rykaczewski K; Paxson AT; Anand S; Chen X; Wang Z; Varanasi KK
    Langmuir; 2013 Jan; 29(3):881-91. PubMed ID: 23259731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.
    Mondal B; Mac Giolla Eain M; Xu Q; Egan VM; Punch J; Lyons AM
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23575-88. PubMed ID: 26372672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pool Boiling of Nanofluids on Biphilic Surfaces: An Experimental and Numerical Study.
    Freitas E; Pontes P; Cautela R; Bahadur V; Miranda J; Ribeiro APC; Souza RR; Oliveira JD; Copetti JB; Lima R; Pereira JE; Moreira ALN; Moita AS
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33430503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coalescence-Induced Droplet Jumping on Honeycomb Bionic Superhydrophobic Surfaces.
    Gao Y; Ke Z; Yang W; Wang Z; Zhang Y; Wu W
    Langmuir; 2022 Aug; 38(32):9981-9991. PubMed ID: 35917142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unidirectional Fast Growth and Forced Jumping of Stretched Droplets on Nanostructured Microporous Surfaces.
    Aili A; Li H; Alhosani MH; Zhang T
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21776-86. PubMed ID: 27486890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Departure of condensation droplets on superhydrophobic surfaces.
    Lv C; Hao P; Yao Z; Niu F
    Langmuir; 2015 Mar; 31(8):2414-20. PubMed ID: 25651077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.