These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32787129)

  • 1. Patterning a Superhydrophobic Area on a Facile Fabricated Superhydrophilic Layer Based on an Inkjet-Printed Water-Soluble Polymer Template.
    Sun J; Li Y; Liu G; Chu F; Chen C; Zhang Y; Tian H; Song Y
    Langmuir; 2020 Aug; 36(33):9952-9959. PubMed ID: 32787129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabricating High-Resolution Metal Pattern with Inkjet Printed Water-Soluble Sacrificial Layer.
    Sun J; Li Y; Liu G; Chen S; Zhang Y; Chen C; Chu F; Song Y
    ACS Appl Mater Interfaces; 2020 May; 12(19):22108-22114. PubMed ID: 32320207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inkjet Printing Enabled Controllable Paper Superhydrophobization and Its Applications.
    Zhang Y; Ren T; He J
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11343-11349. PubMed ID: 29578685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inkjet Pattern-Guided Liquid Templates on Superhydrophobic Substrates for Rapid Prototyping of Microfluidic Devices.
    Lai X; Pu Z; Yu H; Li D
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1817-1824. PubMed ID: 31804059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inkjet-Printing Patterned Chip on Sticky Superhydrophobic Surface for High-Efficiency Single-Cell Array Trapping and Real-Time Observation of Cellular Apoptosis.
    Sun Y; Song W; Sun X; Zhang S
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31054-31060. PubMed ID: 30148358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Facile Approach for Fabricating Microstructured Surface Based on Etched Template by Inkjet Printing Technology.
    Sun J; Yun C; Cui B; Li P; Liu G; Wang X; Chu F
    Polymers (Basel); 2018 Oct; 10(11):. PubMed ID: 30961134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Template Synthesis of Nanostructured Polymeric Membranes by Inkjet Printing.
    Gao P; Hunter A; Benavides S; Summe MJ; Gao F; Phillip WA
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3386-95. PubMed ID: 26785390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Biomimetic Fog-Collecting Superhydrophilic-Superhydrophobic Surface Micropatterns Using Femtosecond Lasers.
    Kostal E; Stroj S; Kasemann S; Matylitsky V; Domke M
    Langmuir; 2018 Mar; 34(9):2933-2941. PubMed ID: 29364677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superhydrophilic-Superhydrophobic Patterned Surfaces as High-Density Cell Microarrays: Optimization of Reverse Transfection.
    Ueda E; Feng W; Levkin PA
    Adv Healthc Mater; 2016 Oct; 5(20):2646-2654. PubMed ID: 27568500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterning liquids on inkjet-imprinted surfaces with highly adhesive superhydrophobicity.
    Bao B; Sun J; Gao M; Zhang X; Jiang L; Song Y
    Nanoscale; 2016 May; 8(18):9556-62. PubMed ID: 27098655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uphill Water Transport on a Wettability-Patterned Surface: Experimental and Theoretical Results.
    Hirai Y; Mayama H; Matsuo Y; Shimomura M
    ACS Appl Mater Interfaces; 2017 May; 9(18):15814-15821. PubMed ID: 28421741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Twice Electrochemical-Etching Method to Fabricate Superhydrophobic-Superhydrophilic Patterns for Biomimetic Fog Harvest.
    Yang X; Song J; Liu J; Liu X; Jin Z
    Sci Rep; 2017 Aug; 7(1):8816. PubMed ID: 28821794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging applications of superhydrophilic-superhydrophobic micropatterns.
    Ueda E; Levkin PA
    Adv Mater; 2013 Mar; 25(9):1234-47. PubMed ID: 23345109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinspired Multifunctional Superhydrophobic Surfaces with Carbon-Nanotube-Based Conducting Pastes by Facile and Scalable Printing.
    Han JT; Kim BK; Woo JS; Jang JI; Cho JY; Jeong HJ; Jeong SY; Seo SH; Lee GW
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7780-7786. PubMed ID: 28155268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inkjet Printing of an Electron Injection Layer: New Role of Cesium Carbonate Interlayer in Polymer OLEDs.
    C A; Luszczynska B; Rekab W; Szymanski MZ; Ulanski J
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33379190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rewritable superhydrophilic-superhydrophobic patterns on a sintered titanium dioxide substrate.
    Nakata K; Nishimoto S; Yuda Y; Ochiai T; Murakami T; Fujishima A
    Langmuir; 2010 Jul; 26(14):11628-30. PubMed ID: 20552954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterned surface with controllable wettability for inkjet printing of flexible printed electronics.
    Nguyen PQ; Yeo LP; Lok BK; Lam YC
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4011-6. PubMed ID: 24571607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inkjet-Printed Organic Transistors Based on Organic Semiconductor/Insulating Polymer Blends.
    Kwon YJ; Park YD; Lee WH
    Materials (Basel); 2016 Aug; 9(8):. PubMed ID: 28773772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dewetting of conducting polymer inkjet droplets on patterned surfaces.
    Wang JZ; Zheng ZH; Li HW; Huck WT; Sirringhaus H
    Nat Mater; 2004 Mar; 3(3):171-6. PubMed ID: 14991019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inkjet patterned superhydrophobic paper for open-air surface microfluidic devices.
    Elsharkawy M; Schutzius TM; Megaridis CM
    Lab Chip; 2014 Mar; 14(6):1168-75. PubMed ID: 24481036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.