These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32787166)

  • 1. Thickness-Tunable Self-Assembled Colloidal Nanoplatelet Films Enable Ultrathin Optical Gain Media.
    Erdem O; Foroutan S; Gheshlaghi N; Guzelturk B; Altintas Y; Demir HV
    Nano Lett; 2020 Sep; 20(9):6459-6465. PubMed ID: 32787166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Gain in Ultrathin Self-Assembled Bi-Layers of Colloidal Quantum Wells Enabled by the Mode Confinement in their High-Index Dielectric Waveguides.
    Foroutan-Barenji S; Erdem O; Gheshlaghi N; Altintas Y; Demir HV
    Small; 2020 Nov; 16(45):e2004304. PubMed ID: 33078558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vertically oriented self-assembly of colloidal CdSe/CdZnS quantum wells controlled
    Dikmen Z; Işık AT; Bozkaya İ; Dehghanpour Baruj H; Canımkurbey B; Shabani F; Ahmad M; Demir HV
    Nanoscale; 2023 Jun; 15(22):9745-9751. PubMed ID: 37212550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model for optical gain in colloidal nanoplatelets.
    Li Q; Lian T
    Chem Sci; 2018 Jan; 9(3):728-734. PubMed ID: 29629142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colloidal CdSe Quantum Wells with Graded Shell Composition for Low-Threshold Amplified Spontaneous Emission and Highly Efficient Electroluminescence.
    Kelestemur Y; Shynkarenko Y; Anni M; Yakunin S; De Giorgi ML; Kovalenko MV
    ACS Nano; 2019 Dec; 13(12):13899-13909. PubMed ID: 31769648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exciton Spatial Coherence and Optical Gain in Colloidal Two-Dimensional Cadmium Chalcogenide Nanoplatelets.
    Li Q; Lian T
    Acc Chem Res; 2019 Sep; 52(9):2684-2693. PubMed ID: 31433164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloride-Induced Thickness Control in CdSe Nanoplatelets.
    Christodoulou S; Climente JI; Planelles J; Brescia R; Prato M; Martín-García B; Khan AH; Moreels I
    Nano Lett; 2018 Oct; 18(10):6248-6254. PubMed ID: 30178676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientation-Controlled Nonradiative Energy Transfer to Colloidal Nanoplatelets: Engineering Dipole Orientation Factor.
    Erdem O; Gungor K; Guzelturk B; Tanriover I; Sak M; Olutas M; Dede D; Kelestemur Y; Demir HV
    Nano Lett; 2019 Jul; 19(7):4297-4305. PubMed ID: 31185570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amplified spontaneous emission and lasing in colloidal nanoplatelets.
    Guzelturk B; Kelestemur Y; Olutas M; Delikanli S; Demir HV
    ACS Nano; 2014 Jul; 8(7):6599-605. PubMed ID: 24882737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red, Yellow, Green, and Blue Amplified Spontaneous Emission and Lasing Using Colloidal CdSe Nanoplatelets.
    She C; Fedin I; Dolzhnikov DS; Dahlberg PD; Engel GS; Schaller RD; Talapin DV
    ACS Nano; 2015 Oct; 9(10):9475-85. PubMed ID: 26302368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonradiative energy transfer in colloidal CdSe nanoplatelet films.
    Guzelturk B; Olutas M; Delikanli S; Kelestemur Y; Erdem O; Demir HV
    Nanoscale; 2015 Feb; 7(6):2545-51. PubMed ID: 25572445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low Threshold Room Temperature Amplified Spontaneous Emission in 0D, 1D and 2D Quantum Confined Systems.
    Chhantyal P; Naskar S; Birr T; Fischer T; Lübkemann F; Chichkov BN; Dorfs D; Bigall NC; Reinhardt C
    Sci Rep; 2018 Mar; 8(1):3962. PubMed ID: 29500408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stacking-Dependent Electrical Transport in a Colloidal CdSe Nanoplatelet Thin-Film Transistor.
    Jana S; Martins R; Fortunato E
    Nano Lett; 2022 Apr; 22(7):2780-2785. PubMed ID: 35343708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Giant" Colloidal Quantum Well Heterostructures of CdSe@CdS Core@Shell Nanoplatelets from 9.5 to 17.5 Monolayers in Thickness Enabling Ultra-High Gain Lasing.
    Isik F; Delikanli S; Durmusoglu EG; Isik AT; Shabani F; Baruj HD; Demir HV
    Small; 2024 Mar; ():e2309494. PubMed ID: 38441357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zero-Threshold Optical Gain in Electrochemically Doped Nanoplatelets and the Physics Behind It.
    Geuchies JJ; Dijkhuizen R; Koel M; Grimaldi G; du Fossé I; Evers WH; Hens Z; Houtepen AJ
    ACS Nano; 2022 Nov; 16(11):18777-18788. PubMed ID: 36256901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateral Size-Dependent Spontaneous and Stimulated Emission Properties in Colloidal CdSe Nanoplatelets.
    Olutas M; Guzelturk B; Kelestemur Y; Yeltik A; Delikanli S; Demir HV
    ACS Nano; 2015 May; 9(5):5041-50. PubMed ID: 25950419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Giant Alloyed Hot Injection Shells Enable Ultralow Optical Gain Threshold in Colloidal Quantum Wells.
    Altintas Y; Gungor K; Gao Y; Sak M; Quliyeva U; Bappi G; Mutlugun E; Sargent EH; Demir HV
    ACS Nano; 2019 Sep; 13(9):10662-10670. PubMed ID: 31436957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room-Temperature Lasing in Colloidal Nanoplatelets via Mie-Resonant Bound States in the Continuum.
    Wu M; Ha ST; Shendre S; Durmusoglu EG; Koh WK; Abujetas DR; Sánchez-Gil JA; Paniagua-Domínguez R; Demir HV; Kuznetsov AI
    Nano Lett; 2020 Aug; 20(8):6005-6011. PubMed ID: 32584048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-Unity Efficiency Energy Transfer from Colloidal Semiconductor Quantum Wells of CdSe/CdS Nanoplatelets to a Monolayer of MoS
    Taghipour N; Hernandez Martinez PL; Ozden A; Olutas M; Dede D; Gungor K; Erdem O; Perkgoz NK; Demir HV
    ACS Nano; 2018 Aug; 12(8):8547-8554. PubMed ID: 29965729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Stable, Near-Unity Efficiency Atomically Flat Semiconductor Nanocrystals of CdSe/ZnS Hetero-Nanoplatelets Enabled by ZnS-Shell Hot-Injection Growth.
    Altintas Y; Quliyeva U; Gungor K; Erdem O; Kelestemur Y; Mutlugun E; Kovalenko MV; Demir HV
    Small; 2019 Feb; 15(8):e1804854. PubMed ID: 30701687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.