These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Excitonic Valley Effects in Monolayer WS Plechinger G; Nagler P; Arora A; Granados Del Águila A; Ballottin MV; Frank T; Steinleitner P; Gmitra M; Fabian J; Christianen PC; Bratschitsch R; Schüller C; Korn T Nano Lett; 2016 Dec; 16(12):7899-7904. PubMed ID: 27960453 [TBL] [Abstract][Full Text] [Related]
23. Luminescence signature of free exciton dissociation and liberated electron transfer across the junction of graphene/GaN hybrid structure. Wang J; Zheng C; Ning J; Zhang L; Li W; Ni Z; Chen Y; Wang J; Xu S Sci Rep; 2015 Jan; 5():7687. PubMed ID: 25567005 [TBL] [Abstract][Full Text] [Related]
24. The excited spin-triplet state of a charged exciton in quantum dots. Molas MR; Nicolet AA; Piętka B; Babiński A; Potemski M J Phys Condens Matter; 2016 Sep; 28(36):365301. PubMed ID: 27391126 [TBL] [Abstract][Full Text] [Related]
25. Direct Observation of Electron-Phonon Coupling and Slow Vibrational Relaxation in Organic-Inorganic Hybrid Perovskites. Straus DB; Hurtado Parra S; Iotov N; Gebhardt J; Rappe AM; Subotnik JE; Kikkawa JM; Kagan CR J Am Chem Soc; 2016 Oct; 138(42):13798-13801. PubMed ID: 27706940 [TBL] [Abstract][Full Text] [Related]
26. Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide. Carozo V; Wang Y; Fujisawa K; Carvalho BR; McCreary A; Feng S; Lin Z; Zhou C; Perea-López N; Elías AL; Kabius B; Crespi VH; Terrones M Sci Adv; 2017 Apr; 3(4):e1602813. PubMed ID: 28508048 [TBL] [Abstract][Full Text] [Related]
27. Direct Observation of Gate-Tunable Dark Trions in Monolayer WSe Li Z; Wang T; Lu Z; Khatoniar M; Lian Z; Meng Y; Blei M; Taniguchi T; Watanabe K; McGill SA; Tongay S; Menon VM; Smirnov D; Shi SF Nano Lett; 2019 Oct; 19(10):6886-6893. PubMed ID: 31487988 [TBL] [Abstract][Full Text] [Related]
28. Optical properties of charged excitons in two-dimensional semiconductors. Glazov MM J Chem Phys; 2020 Jul; 153(3):034703. PubMed ID: 32716165 [TBL] [Abstract][Full Text] [Related]
29. Nanoscale mapping of excitonic processes in single-layer MoS2 using tip-enhanced photoluminescence microscopy. Su W; Kumar N; Mignuzzi S; Crain J; Roy D Nanoscale; 2016 May; 8(20):10564-9. PubMed ID: 27152366 [TBL] [Abstract][Full Text] [Related]
31. Organic triplet excited states of gold(I) complexes with oligo(o- or m-phenyleneethynylene) ligands: conjunction of steady-state and time-resolved spectroscopic studies on exciton delocalization and emission pathways. Lu W; Kwok WM; Ma C; Chan CT; Zhu MX; Che CM J Am Chem Soc; 2011 Sep; 133(35):14120-35. PubMed ID: 21846130 [TBL] [Abstract][Full Text] [Related]
32. The role of excitons' quasiequilibrium in the temperature dependence of the poly(9,9-dioctylfluorene) beta phase photoluminescence. Anni M; Caruso ME; Lattante S; Cingolani R J Chem Phys; 2006 Apr; 124(13):134707. PubMed ID: 16613468 [TBL] [Abstract][Full Text] [Related]
33. Electronic structure and chemical nature of oxygen dopant states in carbon nanotubes. Ma X; Adamska L; Yamaguchi H; Yalcin SE; Tretiak S; Doorn SK; Htoon H ACS Nano; 2014 Oct; 8(10):10782-9. PubMed ID: 25265272 [TBL] [Abstract][Full Text] [Related]
34. Interplay between intrachain and interchain interactions in semiconducting polymer assemblies: the HJ-aggregate model. Yamagata H; Spano FC J Chem Phys; 2012 May; 136(18):184901. PubMed ID: 22583308 [TBL] [Abstract][Full Text] [Related]
35. Insight into the mechanism of the photoluminescence of carbon nanoparticles derived from cryogenic studies. Malyukin Y; Viagin O; Maksimchuk P; Dekaliuk M; Demchenko A Nanoscale; 2018 May; 10(19):9320-9328. PubMed ID: 29737346 [TBL] [Abstract][Full Text] [Related]
36. Exciton-phonon coupling and power dependent room temperature photoluminescence of sulphur vacancy doped MoS Mastrippolito D; Palleschi S; D'Olimpio G; Politano A; Nardone M; Benassi P; Ottaviano L Nanoscale; 2020 Sep; 12(36):18899-18907. PubMed ID: 32902558 [TBL] [Abstract][Full Text] [Related]
37. Mechanism of Single-Photon Upconversion Photoluminescence in All-Inorganic Perovskite Nanocrystals: The Role of Self-Trapped Excitons. Ma X; Pan F; Li H; Shen P; Ma C; Zhang L; Niu H; Zhu Y; Xu S; Ye H J Phys Chem Lett; 2019 Oct; 10(20):5989-5996. PubMed ID: 31549509 [TBL] [Abstract][Full Text] [Related]
38. Evidence for dark excitons in a single carbon nanotube due to the Aharonov-Bohm effect. Matsunaga R; Matsuda K; Kanemitsu Y Phys Rev Lett; 2008 Oct; 101(14):147404. PubMed ID: 18851574 [TBL] [Abstract][Full Text] [Related]
39. Gate Tunable Dark Trions in Monolayer WSe_{2}. Liu E; van Baren J; Lu Z; Altaiary MM; Taniguchi T; Watanabe K; Smirnov D; Lui CH Phys Rev Lett; 2019 Jul; 123(2):027401. PubMed ID: 31386514 [TBL] [Abstract][Full Text] [Related]
40. Temperature-dependent photoluminescence of structurally-precise quantum-confined Au25(SC8H9)18 and Au38(SC12H25)24 metal nanoparticles. Green TD; Yi C; Zeng C; Jin R; McGill S; Knappenberger KL J Phys Chem A; 2014 Nov; 118(45):10611-21. PubMed ID: 25226506 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]