These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 32787209)
1. Accurate Many-Body Repulsive Potentials for Density-Functional Tight Binding from Deep Tensor Neural Networks. Stöhr M; Medrano Sandonas L; Tkatchenko A J Phys Chem Lett; 2020 Aug; 11(16):6835-6843. PubMed ID: 32787209 [TBL] [Abstract][Full Text] [Related]
2. Learning to Use the Force: Fitting Repulsive Potentials in Density-Functional Tight-Binding with Gaussian Process Regression. Panosetti C; Engelmann A; Nemec L; Reuter K; Margraf JT J Chem Theory Comput; 2020 Apr; 16(4):2181-2191. PubMed ID: 32155065 [TBL] [Abstract][Full Text] [Related]
3. Generalized Density-Functional Tight-Binding Repulsive Potentials from Unsupervised Machine Learning. Kranz JJ; Kubillus M; Ramakrishnan R; von Lilienfeld OA; Elstner M J Chem Theory Comput; 2018 May; 14(5):2341-2352. PubMed ID: 29579387 [TBL] [Abstract][Full Text] [Related]
4. Numerical Optimization of Density Functional Tight Binding Models: Application to Molecules Containing Carbon, Hydrogen, Nitrogen, and Oxygen. Krishnapriyan A; Yang P; Niklasson AMN; Cawkwell MJ J Chem Theory Comput; 2017 Dec; 13(12):6191-6200. PubMed ID: 29039935 [TBL] [Abstract][Full Text] [Related]
5. Hybrid Density Functional Tight Binding (DFTB)─Molecular Mechanics Approach for a Low-Cost Expansion of DFTB Applicability. Budiutama G; Li R; Manzhos S; Ihara M J Chem Theory Comput; 2023 Aug; 19(15):5189-5198. PubMed ID: 37450317 [TBL] [Abstract][Full Text] [Related]
6. Density-Functional Tight-Binding Parameters for Bulk Zirconium: A Case Study for Repulsive Potentials. Hutama AS; Chou CP; Nishimura Y; Witek HA; Irle S J Phys Chem A; 2021 Mar; 125(10):2184-2196. PubMed ID: 33645988 [TBL] [Abstract][Full Text] [Related]
7. Treating Semiempirical Hamiltonians as Flexible Machine Learning Models Yields Accurate and Interpretable Results. Hu F; He F; Yaron DJ J Chem Theory Comput; 2023 Sep; 19(18):6185-6196. PubMed ID: 37705220 [TBL] [Abstract][Full Text] [Related]
8. Bulk and Surface Properties of Rutile TiO2 from Self-Consistent-Charge Density Functional Tight Binding. Fox H; Newman KE; Schneider WF; Corcelli SA J Chem Theory Comput; 2010 Feb; 6(2):499-507. PubMed ID: 26617305 [TBL] [Abstract][Full Text] [Related]
9. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations. Maupin CM; Aradi B; Voth GA J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461 [TBL] [Abstract][Full Text] [Related]
10. Predicting Molecular Energy Using Force-Field Optimized Geometries and Atomic Vector Representations Learned from an Improved Deep Tensor Neural Network. Lu J; Wang C; Zhang Y J Chem Theory Comput; 2019 Jul; 15(7):4113-4121. PubMed ID: 31142110 [TBL] [Abstract][Full Text] [Related]
11. Modeling carbon nanostructures with the self-consistent charge density-functional tight-binding method: vibrational spectra and electronic structure of C(28), C(60), and C(70). Witek HA; Irle S; Zheng G; de Jong WA; Morokuma K J Chem Phys; 2006 Dec; 125(21):214706. PubMed ID: 17166039 [TBL] [Abstract][Full Text] [Related]
12. Analytical Time-Dependent Long-Range Corrected Density Functional Tight Binding (TD-LC-DFTB) Gradients in DFTB+: Implementation and Benchmark for Excited-State Geometries and Transition Energies. Sokolov M; Bold BM; Kranz JJ; Höfener S; Niehaus TA; Elstner M J Chem Theory Comput; 2021 Apr; 17(4):2266-2282. PubMed ID: 33689344 [TBL] [Abstract][Full Text] [Related]
13. A Density Functional Tight Binding Layer for Deep Learning of Chemical Hamiltonians. Li H; Collins C; Tanha M; Gordon GJ; Yaron DJ J Chem Theory Comput; 2018 Nov; 14(11):5764-5776. PubMed ID: 30351008 [TBL] [Abstract][Full Text] [Related]
14. Automatized parametrization of SCC-DFTB repulsive potentials: application to hydrocarbons. Gaus M; Chou CP; Witek H; Elstner M J Phys Chem A; 2009 Oct; 113(43):11866-81. PubMed ID: 19778029 [TBL] [Abstract][Full Text] [Related]
15. Parametrization and Benchmark of Long-Range Corrected DFTB2 for Organic Molecules. Vuong VQ; Akkarapattiakal Kuriappan J; Kubillus M; Kranz JJ; Mast T; Niehaus TA; Irle S; Elstner M J Chem Theory Comput; 2018 Jan; 14(1):115-125. PubMed ID: 29232515 [TBL] [Abstract][Full Text] [Related]
16. Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space. Hansen K; Biegler F; Ramakrishnan R; Pronobis W; von Lilienfeld OA; Müller KR; Tkatchenko A J Phys Chem Lett; 2015 Jun; 6(12):2326-31. PubMed ID: 26113956 [TBL] [Abstract][Full Text] [Related]
17. Accurate Free Energies for Complex Condensed-Phase Reactions Using an Artificial Neural Network Corrected DFTB/MM Methodology. Gómez-Flores CL; Maag D; Kansari M; Vuong VQ; Irle S; Gräter F; Kubař T; Elstner M J Chem Theory Comput; 2022 Feb; 18(2):1213-1226. PubMed ID: 34978438 [TBL] [Abstract][Full Text] [Related]
18. Comparative density functional theory and density functional tight binding study of arginine and arginine-rich cell penetrating peptide TAT adsorption on anatase TiO2. Li W; Kotsis K; Manzhos S Phys Chem Chem Phys; 2016 Jul; 18(29):19902-17. PubMed ID: 27400036 [TBL] [Abstract][Full Text] [Related]
20. Computational Spectroscopy of Large Systems in Solution: The DFTB/PCM and TD-DFTB/PCM Approach. Barone V; Carnimeo I; Scalmani G J Chem Theory Comput; 2013 Apr; 9(4):2052-71. PubMed ID: 26583552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]