BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 32787227)

  • 1.
    Endo R; Ohnishi T; Takada K; Masuda T
    J Phys Chem Lett; 2020 Aug; 11(16):6649-6654. PubMed ID: 32787227
    [No Abstract]   [Full Text] [Related]  

  • 2. Electrochemical Lithiation and Delithiation in Amorphous Si Thin Film Electrodes Studied by
    Endo R; Ohnishi T; Takada K; Masuda T
    J Phys Chem Lett; 2022 Aug; 13(31):7363-7370. PubMed ID: 35924823
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Putra RP; Matsushita K; Ohnishi T; Masuda T
    J Phys Chem Lett; 2024 Jan; 15(2):490-498. PubMed ID: 38190614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shedding X-ray Light on the Interfacial Electrochemistry of Silicon Anodes for Li-Ion Batteries.
    Cao C; Shyam B; Wang J; Toney MF; Steinrück HG
    Acc Chem Res; 2019 Sep; 52(9):2673-2683. PubMed ID: 31479242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Step toward High-Energy Silicon-Based Thin Film Lithium Ion Batteries.
    Reyes Jiménez A; Klöpsch R; Wagner R; Rodehorst UC; Kolek M; Nölle R; Winter M; Placke T
    ACS Nano; 2017 May; 11(5):4731-4744. PubMed ID: 28437078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidating the Surface Reactions of an Amorphous Si Thin Film as a Model Electrode for Li-Ion Batteries.
    Ferraresi G; Czornomaz L; Villevieille C; Novák P; El Kazzi M
    ACS Appl Mater Interfaces; 2016 Nov; 8(43):29791-29798. PubMed ID: 27718552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithiation/Delithiation Properties of Lithium Silicide Electrodes in Ionic-Liquid Electrolytes.
    Domi Y; Usui H; Ieuji N; Nishikawa K; Sakaguchi H
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3816-3824. PubMed ID: 33448801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon.
    Chan MK; Wolverton C; Greeley JP
    J Am Chem Soc; 2012 Sep; 134(35):14362-74. PubMed ID: 22817384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms.
    Key B; Morcrette M; Tarascon JM; Grey CP
    J Am Chem Soc; 2011 Jan; 133(3):503-12. PubMed ID: 21171582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unveiling the Complex Redox Reactions of SnO
    Mirolo M; Wu X; Vaz CAF; Novák P; El Kazzi M
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2547-2557. PubMed ID: 33426869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of Lithium Insertion Mechanisms of a Thin-Film Si Electrode by Coupling Time-of-Flight Secondary-Ion Mass Spectrometry, X-ray Photoelectron Spectroscopy, and Focused-Ion-Beam/SEM.
    Bordes A; De Vito E; Haon C; Secouard C; Montani A; Marcus P
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27853-62. PubMed ID: 26618212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ electrochemical lithiation/delithiation observation of individual amorphous Si nanorods.
    Ghassemi H; Au M; Chen N; Heiden PA; Yassar RS
    ACS Nano; 2011 Oct; 5(10):7805-11. PubMed ID: 21902219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Mixed Salt Electrolytes to Stabilize Silicon Anodes for Lithium-Ion Batteries via in Situ Formation of Li-M-Si Ternaries (M = Mg, Zn, Al, Ca).
    Han B; Liao C; Dogan F; Trask SE; Lapidus SH; Vaughey JT; Key B
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29780-29790. PubMed ID: 31318201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction Behavior of a Silicide Electrode with Lithium in an Ionic-Liquid Electrolyte.
    Domi Y; Usui H; Sugimoto K; Gotoh K; Nishikawa K; Sakaguchi H
    ACS Omega; 2020 Sep; 5(35):22631-22636. PubMed ID: 32923823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sandwich-lithiation and longitudinal crack in amorphous silicon coated on carbon nanofibers.
    Wang JW; Liu XH; Zhao K; Palmer A; Patten E; Burton D; Mao SX; Suo Z; Huang JY
    ACS Nano; 2012 Oct; 6(10):9158-67. PubMed ID: 22984869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling the Reaction Mechanisms of SiO Anodes for Li-Ion Batteries by Combining in Situ
    Kitada K; Pecher O; Magusin PCMM; Groh MF; Weatherup RS; Grey CP
    J Am Chem Soc; 2019 May; 141(17):7014-7027. PubMed ID: 30964666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical Reactivity and Passivation of Silicon Thin-Film Electrodes in Organic Carbonate Electrolytes.
    Hasa I; Haregewoin AM; Zhang L; Tsai WY; Guo J; Veith GM; Ross PN; Kostecki R
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40879-40890. PubMed ID: 32805823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithiation of Crystalline Silicon As Analyzed by Operando Neutron Reflectivity.
    Seidlhofer BK; Jerliu B; Trapp M; Hüger E; Risse S; Cubitt R; Schmidt H; Steitz R; Ballauff M
    ACS Nano; 2016 Aug; 10(8):7458-66. PubMed ID: 27447734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Insights into Electrochemical Lithiation/Delithiation Mechanism of α-MoO3 Nanobelt by in Situ Transmission Electron Microscopy.
    Xia W; Zhang Q; Xu F; Sun L
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9170-7. PubMed ID: 27008317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the Mg-Si Binary System via Combinatorial Sputter Deposition As High Energy Density Anodes for Lithium-Ion Batteries.
    Schmuelling G; Winter M; Placke T
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20124-33. PubMed ID: 26313948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.